3D Viewing, part II

CS 465 Lecture 11

Viewing, backward and forward

• So far have used the backward approach to viewing
 – start from pixel
 – ask what part of scene projects to pixel
 – explicitly construct the ray corresponding to the pixel

• Next will look at the forward approach
 – start from a point in 3D
 – compute its projection into the image

• Central tool is matrix transformations
 – combines seamlessly with coordinate transformations used to position camera and model
 – ultimate goal: single matrix operation to map any 3D point to its correct screen location.

Ray generation with matrices

• We didn't use transformations in eye ray generation, but can we simplify things using them?

• Our ray generation process:
 – Step 0: build basis for image plane
 – Step 1: find \((u, v)\) coordinates from pixel indices
 – Step 2: offset from the center of the image window to get \(q\)
 – Step 3: build the ray as \((p, q - p)\)

• Steps 1 and 2 can be done with affine transformations
 – Step A: build a coordinate frame for the camera
 – Step B: make a 2D affine transformation to go from \((i, j)\) to \((u, v)\)
 – Step C: make a 3D affine transform to find \(q\) in camera coordinates
 – Step D: multiply it all together to get a transform that goes straight from \((i, j)\) to \(q\)

Ray generation with matrices

• Step A: build a coordinate frame for the camera
 – Already did this, really

• Build ONB from image plane normal and up vector
 – Frame origin is the viewpoint
 – Axes aligned with image

• No longer need to worry about camera pose
 – rays all start at \(0\)
 – directions all on a plane

\[F_c = \begin{bmatrix} \hat{u} & \hat{v} & \hat{w} & p \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \]
Ray generation with matrices

- Step B: affine transformation from \((i,j)\) to \((u,v)\)
 - slight change of \((u,v)\) convention: let \((u,v)\) be in \([-1,1] \times [-1,1]\)

- Simple to build:
 - origin goes to center of lower left pixel, which is \((-1 + 1/m, -1 + 1/n)\) for an \(m\) by \(n\) image, so that is the translation part
 - scale by \(2/m\) in \(x\) and \(2/n\) in \(y\)

\[
M_v = \begin{bmatrix}
2/m & 0 & 1/m - 1 \\
0 & 2/n & 1/n - 1 \\
0 & 0 & 1
\end{bmatrix}
\]

- I'll call this the ray generation viewport matrix

Windowing transforms

- This transformation is worth generalizing: take one axis-aligned rectangle or box to another
 - a useful, if mundane, piece of a transformation chain

\[
\begin{bmatrix}
1 & 0 & c \\
0 & 1 & d \\
0 & 0 & 1
\end{bmatrix}
\]

Ray generation with matrices

- Step C: affine transform from \((u,v)\) to \(q\)
 - This is easy because the way we computed it before is directly a matrix operation

\[
M_s = \begin{bmatrix}
w/m/2 & 0 & dd_x \\
0 & h/v/2 & dd_y \\
0 & 0 & dd_z \\
0 & 0 & 1
\end{bmatrix}
\]

\[
q = dd_x \hat{e}_x + \frac{uw}{2} \hat{e}_1 + \frac{hv}{2} \hat{e}_2
\]
Ray generation with matrices

- Step D: put it all together
- To transform pixel \((i, j)\) to the point \(q\):
 - multiply by \(M_v\) to get \((u, v)\)
 - multiply by \(M_s\) to get \(q_c\) (\(q\) in camera frame)
 - ray is \((0, q_c - 0)\); multiply by \(F\) to get into world coords
- Subtracting the point 0 is the same as zeroing the \(w\) coord
 - can do in transformation world by multiplying by

\[
\Pi = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
- could call this the "point-to-vector" matrix

Ray generation with matrices

- So, for pixel \((i, j)\), start with \(x = [i, j]^T\) and:

\[
\text{ray} = (p, F_p \Pi M_s M_v x) = (p, M_{\text{ray gen}} x)
\]
 - starts at \(p\); direction is computed by multiplication with a single matrix
- That’s all there is to ray generation!
 - typical of transformation approach: all the work is in the setup
 - generating many rays this way is quite efficient (a few multiplications and additions, with no conditionals)
- What we did here:
 - worked in a convenient coordinate system (eye coordinates)
 - expressed several distinct steps as transformations
 - kept parameters separate
 - camera pose, camera intrinsics, image resolution don’t interact directly
 - concatenated transformations together

Forward viewing

- Would like to just invert the ray generation process
- Two problems (really two symptoms of same problem)
 - ray generation matrix is not invertible (it is 4 by 3)
 - ray generation produces rays, not points in scene
- Inverting the ray tracing process requires division for the perspective case

Mathematics of projection

- Always work in eye coords
 - assume eye point at 0 and plane perpendicular to \(z\)
- Orthographic case
 - a simple projection: just toss out \(z\)
- Perspective case: scale diminishes with \(z\)
 - and increases with \(d\)
Parallel projection: orthographic

To implement orthographic, just toss out z:

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
\]

Parallel projection: oblique

To implement oblique, shear then toss out z:

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & a \\
 0 & 1 & b \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
\]

View volume: orthographic

Choosing the view rectangle

- So far have just assumed we keep the x and y coords unchanged
- But they eventually have to get mapped into the image
 - As with ray generation example, do this in two steps:
 1. Map desired view window to $[-1, 1] \times [-1, 1]$ (maps projected x and y coordinates to canonical coordinates)
 2. Map canonical coordinates to pixel coordinates
- Window specification: top, left, bottom, right coords (t, l, b, r)
 - so first transform is $[l, r] \times [b, t]$ to $[-1, 1] \times [-1, 1]$
 - this product is known as the projection matrix for an orthographic view

\[
M_0 =
\begin{bmatrix}
 \frac{2}{l-r} & 0 & -\frac{l+r}{l-r} \\
 0 & \frac{2}{t-b} & -\frac{t+b}{t-b} \\
 0 & 0 & 1
\end{bmatrix}
\]

\[
\text{window} =
\begin{bmatrix}
 \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
 0 & \frac{2}{l-r} & -\frac{l+r}{l-r} \\
 0 & 0 & 1
\end{bmatrix}
\]
Viewport matrix

- The second windowing step is to map the canonical coordinates to pixel coordinates.
- Another viewport transformation, going from \([-1,1]\) x \([-1,1]\) to \([-1/2, m – 1/2]\) x \([-1/2, n – 1/2]\)

\[
M_{vp} = \begin{bmatrix}
\frac{m}{2} & 0 & \frac{m-1}{2} \\
0 & \frac{n}{2} & \frac{n-1}{2} \\
0 & 0 & 1
\end{bmatrix}
\]

- This matrix is known as the **viewport matrix**

Viewing and modeling matrices

- We worked out all the preceding transforms starting from eye coordinates
 - before we do any of this stuff we need to transform into that space
- Transform from world (canonical) to eye space is traditionally called the **viewing matrix**
 - it is the canonical-to-frame matrix for the camera frame
 - that is, \(F_c^{-1}\)
- Remember that geometry would originally have been in the object’s local coordinates; transform into world coordinates is called the **modeling matrix**, \(M_m\)
- Note some systems (e.g. OpenGL) combine the two into a **modelview** matrix and just skip world coordinates

Viewing transformation

the view matrix rewrites all coordinates in eye space

Orthographic transformation chain

- Start with coordinates in object’s local coordinates
- Transform into world coords (modeling transform, \(M_m\))
- Transform into eye coords (camera canonical-to-frame, \(F_c^{-1}\))
- Orthographic projection, \(M_o\)
- Viewport transform, \(M_{vp}\)

\[
\begin{bmatrix}
x_{pixel} \\
y_{pixel} \\
1
\end{bmatrix} = M_{vp} M_o F_c^{-1} M_m \begin{bmatrix}
x_{object} \\
y_{object} \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
x_{pixel} \\
y_{pixel} \\
1
\end{bmatrix} = \begin{bmatrix}
m & 0 & \frac{m-1}{2} \\
0 & n & \frac{n-1}{2} \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\frac{m}{2} & 0 & \frac{m-1}{2} \\
0 & \frac{n}{2} & \frac{n-1}{2} \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x_{object} \\
y_{object} \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
x_{world} \\
y_{world} \\
1
\end{bmatrix} = \begin{bmatrix}
\frac{m}{2} & 0 & \frac{m-1}{2} \\
0 & \frac{n}{2} & \frac{n-1}{2} \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\frac{m}{2} & 0 & \frac{m-1}{2} \\
0 & \frac{n}{2} & \frac{n-1}{2} \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\hat{u} \hat{v} \hat{w} \hat{p}
\end{bmatrix}^{-1} \begin{bmatrix}
x_{world} \\
y_{world} \\
1
\end{bmatrix}
\]
Perspective projection

\[\left(x', y' \right) = \left(\frac{y}{d}, \frac{-z}{d} \right) \]

Homogeneous coordinates revisited

- Perspective requires division
 - that is not part of affine transformations
 - in affine, parallel lines stay parallel
- therefore not vanishing point
- therefore no rays converging on viewpoint
- “True” purpose of homogeneous coords: *projection*

Implications of \(w \)

- All scalar multiples of a 4-vector are equivalent
- When \(w \) is not zero, can divide by \(w \)
 - therefore these points represent “normal” affine points
- When \(w \) is zero, it’s a **point at infinity**, a.k.a. a direction
 - this is the point where parallel lines intersect
 - can also think of it as the vanishing point
- Digression on projective space

Homogeneous coordinates revisited

- Introduced \(w = 1 \) coordinate as a placeholder
 \[\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \]
 - used as a convenience for unifying translation with linear
- Can also allow arbitrary \(w \)
 \[\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \sim \begin{bmatrix} wx \\ wy \\ wz \\ w \end{bmatrix} \]
Perspective projection

to implement perspective, just move z to w:

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} = \begin{bmatrix}
-dx/z \\
-dy/z \\
1
\end{bmatrix} \sim \begin{bmatrix}
dx \\
dy \\
-z
\end{bmatrix} = \begin{bmatrix}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

View volume: perspective

Choosing the view rectangle

- We can use exactly the same windowing transform as in the orthographic case to map the view window to the canonical rectangle:

\[
M_p = \begin{bmatrix}
\frac{x-a}{w} & 0 & -\frac{a}{w} & 0 \\
0 & \frac{y-b}{h} & -\frac{b}{h} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- note that this transform entirely ignores w
- this makes sense because scaling a point around the origin (i.e. viewpoint, in eye space) doesn't change its projection

- This is the projection matrix for perspective projection

Clipping planes

- In object-order systems we always use at least two clipping planes that further constrain the view volume
 - near plane: parallel to view plane; things between it and the viewpoint will not be rendered
 - far plane: also parallel; things behind it will not be rendered

- These planes are:
 - partly to remove unnecessary stuff (e.g. behind the camera)
 - but really to constrain the range of depths (we’ll see why later)
Preserving depth through projection

- Perspective: can no longer toss out \(w \)
- Arrange for projection matrix to preserve \(n \) and \(f \)

\[
\begin{bmatrix}
\tilde{x}' \\
\tilde{y}' \\
\tilde{z}'
\end{bmatrix} = \begin{bmatrix}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
\tilde{w}
\end{bmatrix}
\]

- we're stuck with the \(w \) row, but choose \(a \) and \(b \) to ensure that \(\tilde{z}' = n \) when \(z = n \) and \(\tilde{z}' = f \) when \(z = f \)

\[
\tilde{z}(z) = az + b \\
\tilde{z}'(z) = \frac{\tilde{z}}{-\tilde{w}} = \frac{az + b}{-\tilde{w}}
\]

want \(\tilde{z}'(n) = n \) and \(\tilde{z}'(f) = f \)
result: \(a = -(n + f) \) and \(b = nf \) (try it)

NOTE: Book assumes \(d=n \)
Clip coordinates

- Projection matrix maps from eye space to *clip space*
- In this space, the two-unit cube $[-1, 1]^3$ contains exactly what needs to be drawn
- It’s called “clip” coordinates because everything outside of this box is clipped out of the view
 - this can be done at this point, geometrically
 - or it can be done implicitly later on by careful rasterization

OpenGL view frustum: orthographic

```
glOrtho(xmin, xmax, ymin, ymax, near, far)
```

Note OpenGL puts the near and far planes at $-n$ and $-f$ so that the user can give positive numbers

OpenGL view frustum: perspective

```
glFrustum(xmin, xmax, ymin, ymax, near, far);
```

OpenGL: Specifying Perspective

Two approaches:
1. `glFrustum(xmin, xmax, ymin, ymax, near, far);`
 - Analogous to `glOrtho(...)`
 - Can be painful in practice
2. `gluPerspective(fovy, aspect, near, far);`
 - near and far as before
 - Fovy specifies field of view as height (y) angle
OpenGL: `gluLookAt()` Function

- Convenient way to position camera
- `gluLookAt(ex, ey, ez, ax, ay, az, px, py, pz);`
 - `e` = eye point
 - `a` = at point
 - `p` = up vector

Vertex processing: spaces

- Standard sequence of transforms