Motivation: smoothness

- In many applications we need smooth shapes
 - that is, without discontinuities
- So far we can make
 - things with corners (lines, squares, rectangles, …)
 - circles and ellipses (only get you so far!)

Classical approach

- Pencil-and-paper draftsmen also needed smooth curves
- Origin of “spline:” strip of flexible metal
 - held in place by pegs or weights to constrain shape
 - traced to produce smooth contour

Translating into usable math

- Smoothness
 - in drafting spline, comes from physical curvature minimization
 - in CG spline, comes from choosing smooth functions
 - usually low-order polynomials
- Control
 - in drafting spline, comes from fixed pegs
 - in CG spline, comes from user-specified control points
Defining spline curves

- At the most general they are parametric curves
 \[S = \{ p(t) \mid t \in [0, N] \} \]
- Generally \(f(t) \) is a piecewise polynomial
 - for this lecture, the discontinuities are at the integers

Coordinate functions

- Generally \(f(t) \) is a piecewise polynomial
 - for this lecture, the discontinuities are at the integers
 - e.g., a cubic spline has the following form over \([k, k + 1]\):
 \[
 x(t) = a_x t^3 + b_x t^2 + c_x t + d_x \\
 y(t) = a_y t^3 + b_y t^2 + c_y t + d_y
 \]
 - Coefficients are different for every interval
Control of spline curves

- Specified by a sequence of **control points**
- Shape is guided by control points (aka control polygon)
 - **interpolating**: passes through points
 - **approximating**: merely guided by points

How splines depend on their controls

- Each coordinate is separate
 - the function $x(t)$ is determined solely by the x coordinates of the control points
 - this means 1D, 2D, 3D, … curves are all really the same
- Spline curves are **linear** functions of their controls
 - moving a control point two inches to the right moves $x(t)$ twice as far as moving it by one inch
 - $x(t)$, for fixed t, is a linear combination (weighted sum) of the control points’ x coordinates
 - $p(t)$, for fixed t, is a linear combination (weighted sum) of the control points

Splines as reconstruction

- This spline is just a polyline
 - control points are the vertices
- But we can derive it anyway as an illustration
- Each interval will be a linear function
 - $x(t) = at + b$
 - constraints are values at endpoints
 - $b = x_0$; $a = x_1 - x_0$
 - this is linear interpolation

Trivial example: piecewise linear
Trivial example: piecewise linear

- Vector formulation
 \[x(t) = (x_1 - x_0)t + x_0 \]
 \[y(t) = (y_1 - y_0)t + y_0 \]
 \[p(t) = (p_1 - p_0)t + p_0 \]

- Matrix formulation
 \[p(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \end{bmatrix} \]

Trivial example: piecewise linear

- Basis function formulation
 - regroup expression by \(p \) rather than \(t \)
 \[p(t) = (p_1 - p_0)t + p_0 \]
 \[= (1 - t)p_0 + tp_1 \]

 - interpretation in matrix viewpoint
 \[p(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \end{bmatrix} \]

Trivial example: piecewise linear

- Vector blending formulation: “average of points”
 - blending functions: contribution of each control point as \(t \) changes

 ![Graph](image)

Trivial example: piecewise linear

- Basis function formulation: “function times point”
 - basis functions: contribution of each point as \(t \) changes

 - can think of them as blending functions glued together
 - (this is just like a reconstruction filter!)
Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
 - to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
 • what are \(x(t) \) and \(y(t) \)?
 - then move one control straight up

Hermite splines

- Less trivial example
- Form of curve: piecewise cubic
- Constraints: endpoints and tangents (derivatives)

Hermite splines

- Solve constraints to find coefficients

\[
\begin{align*}
x(t) &= at^3 + bt^2 + ct + d \\
x'(t) &= 3at^2 + 2bt + c \\
x(0) &= x_0 \\
x(1) &= x_1 = a + b + c + d \\
x'(0) &= x'_0 = c \\
x'(1) &= x'_1 = 3a + 2b + c
\end{align*}
\]

\[
d = x_0 \\
c = x'_0 \\
a = 2x_0 - 2x_1 + x'_0 + x'_1 \\
b = -3x_0 + 3x_1 - 2x'_0 - x'_1
\]

Hermite splines

- **Preview:** Matrix form is much simpler

\[
p(t) = \begin{bmatrix} t^3 & t^2 & t \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ v_0 \\ v_1 \end{bmatrix}
\]

- coefficients = rows
- basis functions = columns

• note \(p \) columns sum to \([0 \ 0 \ 0 \ 1]^T\)
Longer Hermite splines

• Can only do so much with one Hermite spline
• Can use these splines as segments of a longer curve
 – curve from $t = 0$ to $t = 1$ defined by first segment
 – curve from $t = 1$ to $t = 2$ defined by second segment
• To avoid discontinuity, match derivatives at junctions
 – this produces a C^1 curve

Hermite splines

• Hermite blending functions

Hermite splines

• Hermite basis functions

Continuity

• Smoothness can be described by degree of continuity
 – zero-order (C^0): position matches from both sides
 – first-order (C^1): tangent matches from both sides
 – second-order (C^2): curvature matches from both sides
 – G^n vs. C^n
Continuity

- **Parametric continuity (C):**
 - Continuity of the coordinate functions
- **Geometric continuity (G):**
 - Continuity of the curve itself
- Neither form of continuity guarantees the other:
 - Can be C^1 but not G^1 when $p(t)$ comes to a halt (next slide)
 - Can be G^1 but not C^1 when the tangent vector changes length abruptly

Control

- **Local control**
 - changing control point only affects a limited part of spline
 - without this, splines are very difficult to use
 - many likely formulations lack this
 - natural spline
 - polynomial fits

Geometric vs. parametric continuity

- **Convex hull property**
 - convex hull = smallest convex region containing points
 - think of a rubber band around some pins
 - some splines stay inside convex hull of control points
 - make clipping, culling, picking, etc. simpler
 - YES YES YES NO
Affine invariance

- Transforming the control points is the same as transforming the curve
 - true for all commonly used splines
 - extremely convenient in practice...

Matrix form of spline

\[p(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d} \]

Hermite splines

- Constraints are endpoints and endpoint tangents

Hermite basis
Affine invariance

- Basis functions associated with points should always sum to 1

\[p(t) = b_0 p_0 + b_1 p_1 + b_2 v_0 + b_3 v_1 \]

\[p'(t) = b_0 (p_0 + u) + b_1 (p_1 + u) + b_2 v_0 + b_3 v_1 \]

- Note: derivative is defined as 3 times offset

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

\[\frac{d}{dt} p(t) = 3 \cdot \text{offset} \]

Bézier matrix

\[p(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} \]

- Note that these are the Bernstein polynomials

\[C(n,k) \ t^k \ (1-t)^{n-k} \]

and that defines Bézier curves for any degree.

- \(C(n,k) \): Binomial coefficient \(\frac{n!}{k!(n-k)!} \)
Bézier basis

Convex hull

- If basis functions are all positive, the spline has the convex hull property
 - we’re still requiring them to sum to 1

- if any basis function is ever negative, no convex hull property!
 - proof: take the other three points at the same place

Chaining spline segments

- Hermite curves are convenient because they can be made long easily
- Bézier curves are convenient because their controls are all points and they have nice properties
 - and they interpolate every 4th point, which is a little odd
- We derived Bézier from Hermite by defining tangents from control points
 - a similar construction leads to the interpolating Catmull-Rom spline

Chaining Bézier splines

- No continuity built in
- Achieve C^1 using collinear control points
Subdivision

• A Bézier spline segment can be split into a two-segment curve:
 – de Casteljau’s algorithm (fast, numerically stable)
 – also works for arbitrary t

Cubic Bézier splines

• Very widely used type, especially in 2D
 – e.g. it is a primitive in PostScript/PDF
• Can represent C^1 and/or G^1 curves with corners
• Can easily add points at any position
• Illustrator demo

Hermite to Catmull-Rom

• Have not yet seen any interpolating splines
• Would like to define tangents automatically
 – use adjacent control points

Hermite to Catmull-Rom

• Tangents are $(q_{k+1} - q_{k-1}) / 2$
 – scaling based on same argument about collinear case

\[
\begin{align*}
p_0 &= q_k \\
p_1 &= q_{k+1} \\
v_0 &= 0.5(q_{k+1} - q_{k-1}) \\
v_1 &= 0.5(q_{k+2} - q_k)
\end{align*}
\]

\[
\begin{bmatrix}
a \\ b \\ c \\ d
\end{bmatrix} = \begin{bmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-0.5 & 0 & 0.5 & 0 \\
0 & -0.5 & 0 & 0.5
\end{bmatrix} \begin{bmatrix}
q_{k-1} \\
q_k \\
q_{k+1} \\
q_{k+2}
\end{bmatrix}
\]
Catmull-Rom basis

Catmull-Rom splines
- Our first example of an interpolating spline
- Like Bézier, equivalent to Hermite
 - in fact, all splines of this cubic form are equivalent
- First example of a spline based on just a control point sequence
- Does not have convex hull property
- Only C^1

Catmull-Rom Camera Demo

B-splines
- We may want more continuity than C^1
- We may not need an interpolating spline
- B-splines are a clean, flexible way of making long splines with arbitrary order of continuity
- Various ways to think of construction
 - a simple one is convolution
 - relationship to sampling and reconstruction
Cubic B-spline basis

Deriving the B-Spline

- Approached from a different tack than Hermite-style constraints
 - Want a cubic spline; therefore 4 active control points
 - Want C^2 continuity
 - Turns out that is enough to determine everything

Efficient construction of any B-spline

- B-splines defined for all orders
 - order \(d \): degree \(d - 1 \)
 - order \(d \): \(d \) points contribute to value
- One definition: Cox-deBoor recurrence

 \[
 b_1 = \begin{cases}
 1 & 0 \leq u < 1 \\
 0 & \text{otherwise}
 \end{cases}
 \]

 \[
 b_d = \frac{t}{d-1} b_{d-1}(t) + \frac{d-t}{d-1} b_{d-1}(t-1)
 \]

B-spline construction, alternate view

- Recurrence
 - ramp up/down
- Convolution
 - smoothing of basis fn
 - smoothing of curve
Cubic B-spline matrix

\[p(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{bmatrix} \]

Other types of B-splines

- Nonuniform B-splines
 - discontinuities not evenly spaced
 - allows control over continuity or interpolation at certain points
 - e.g., interpolate endpoints (commonly used case)
- Nonuniform Rational B-splines (NURBS)
 - ratios of nonuniform B-splines: \(x(t) / w(t); y(t) / w(t) \)
 - key properties:
 - invariance under perspective as well as affine
 - ability to represent conic sections exactly

Converting spline representations

- All the splines we have seen so far are equivalent
 - all represented by geometry matrices
 \[p_S(t) = T(t)M_SP_S \]
 - where \(S \) represents the type of spline
 - therefore the control points may be transformed from one type to another using matrix multiplication
 \[P_1 = M_1^{-1}M_2P_2 \]
 \[p_1(t) = T(t)M_1(M_1^{-1}M_2P_2) \]
 \[= T(t)M_2P_2 = p_2(t) \]

Evaluating splines for display

- Need to generate a list of line segments to draw
 - generate efficiently
 - use as few as possible
 - guarantee approximation accuracy
- Approaches
 - recursive subdivision (easy to do adaptively)
 - uniform sampling (easy to do efficiently)
Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria
 - distance between control points
 - distance of control points from line

Evaluating with uniform spacing

- Forward differencing
 - efficiently generate points for uniformly spaced t values
 - evaluate polynomials using repeated differences
 - Problem: errors can accumulate