Scene Graphs

CS 465 Lecture 9

Data structures with transforms

- Representing a drawing ("scene")
- List of objects
- Transform for each object
 - can use minimal primitives, e.g., ellipse is scaled circle
 - transform applies to points of object

E.g., Character animation

Dreamworks/Paramount—Transformers (screenshot: www.transformersmovie.com)

E.g., Modeling complex scenes

From "Matrix Revolutions"
Example

- Can represent drawing with flat list
 - but editing operations require updating many transforms

Groups of objects

- Treat a set of objects as one
- Introduce new object type: group
 - contains list of references to member objects
- This makes the model into a tree
 - interior nodes = groups
 - leaf nodes = objects
 - edges = membership of object in group

The Scene Graph (tree)

- A name given to various kinds of graph structures (nodes connected together) used to represent scenes
- Simplest form: tree
 - just saw this
 - every node has one parent
 - leaf nodes are identified with objects in the scene
Concatenation and hierarchy

- Transforms associated with nodes or edges
- Each transform applies to all geometry below it
 - want group transform to transform each member
 - members already transformed—concatenate
- Frame transform for object is product of all matrices along path from root
 - each object’s transform describes relationship between its local coordinates and its group’s coordinates
 - frame-to-canonical transform is the result of repeatedly changing coordinates from group to containing group

Instances

- Simple idea: allow an object to be a member of more than one group at once
 - transform different in each case
 - leads to linked copies
 - single editing operation changes all instances

Example

- Allow multiple references to nodes
 - reflects more of drawing structure
 - allows editing of repeated parts in one operation

Instancing is useful!
The Scene Graph (with instances)

- Instancing breaks tree structure:
 - an object that is instanced multiple times has more than one parent
- Transform tree becomes DAG
 - directed acyclic graph
 - group is not allowed to contain itself, even indirectly
- Transforms still accumulate along path from root
 - now paths from root to leaves are identified with scene objects

Implementing a hierarchy

- Object-oriented language is convenient
 - define shapes and groups as derived from single class

    ```java
    abstract class Shape {
        void draw();
    }
    
    class Square extends Shape {
        void draw() { // draw unit square
        }
    }
    
    class Circle extends Shape {
        void draw() { // draw unit circle
        }
    }
    
    class Group extends Shape {
        Transform t;
        ShapeList members;
        void draw(Transform t_c) {
            for (m in members) {
                m.draw(t_c * t);
            }
        }
    }
    ```

Implementing traversal

- Pass a transform down the hierarchy
 - before drawing, concatenate

    ```java
    abstract class Shape {
        void draw(Transform t_c);
    }
    
    class Square extends Shape {
        void draw(Transform t_c) {
            // draw t_c * unit square
        }
    }
    
    class Circle extends Shape {
        void draw(Transform t_c) {
            // draw t_c * unit circle
        }
    }
    
    class Group extends Shape {
        Transform t;
        ShapeList members;
        void draw(Transform t_c) {
            for (m in members) {
                m.draw(t_c * t);
            }
        }
    }
    ```

Basic Scene Graph operations

- Editing a transformation
 - good to present usable UI
- Getting transform of object in canonical (world) frame
 - traverse path from root to leaf
- Grouping and ungrouping
 - can do these operations without moving anything
 - group: insert identity node
 - ungroup: remove node, push transform to children
- Reparenting
 - move node from one parent to another
 - can do without altering position
Adding more than geometry

- Objects have properties besides shape
 - color, shading parameters
 - approximation parameters (e.g. precision of subdividing curved surfaces into triangles)
 - behavior in response to user input
 - Animation behavior/interpolator nodes
 - ...

- Setting properties for entire groups is useful
 - paint entire window green

- Many systems include some kind of property nodes
 - in traversal they are read as, e.g., "set current color"

Scene Graph variations

- Where transforms go
 - in every node
 - on edges
 - in group nodes only
 - in special Transform nodes

- Tree vs. DAG
- Nodes for cameras and lights?

Implementations

- Many modeling programs use scene graph data structures to manage complexity:
 - Maya
 - 3D studio max
 - ...

- Graphics APIs:
 - Open Inventor
 - Java3D
 - NVIDIA scene graph (NVSG)
 - ...