Triangle meshes

CS 465 Lecture 7

Acknowledgement

• Most slides: Steve Marschner

Notation

• $n_T =$ #tris; $n_V =$ #verts; $n_E =$ #edges
• Euler: $n_V - n_E + n_T = 2$ for a simple closed surface
 - and in general sums to small integer
 - argument has implication that $n_V:n_E:n_T$ is about 2:3:1

Validity of triangle meshes

• in many cases we care about the mesh being able to
 bound a region of space nicely
• in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them
 (and may fail on malformed input)
• two completely separate issues:
 - topology: how the triangles are connected (ignoring the positions entirely)
 - geometry: where the triangles are in 3D space, i.e.,
 the embedding of the mesh in 3-space.
Topology/geometry examples

- same geometry, different mesh topology:
 ![Example 1](image1)
 ![Example 2](image2)

- same mesh topology, different geometry:
 ![Example 3](image3)
 ![Example 4](image4)

Topological validity

- strongest property, and most simple: be a manifold
 - this means that no points should be "special"
 - Neighborhood of each point is topologically equivalent to a disk.
 - interior points are fine
 - edge points: each edge should have exactly 2 triangles
 - vertex points: each vertex should have one loop of triangles
 - not too hard to weaken this to allow boundaries

Geometric validity

- usually want non-self-intersecting surface
- hard to guarantee in general
 - because far-apart parts of mesh might intersect

Representation of triangle meshes

- Compactness
- Efficiency for rendering
 - enumerate all triangles as triples of 3D points
- Efficiency of queries
 - all vertices of a triangle
 - all triangles around a vertex
 - neighboring triangles of a triangle
 - (need depends on application)
 - finding triangle strips
 - computing subdivision surfaces
 - mesh editing and cutting
 - physical simulation
Representations for triangle meshes

- Separate triangles
- Indexed triangle set
 - shared vertices
- Triangle strips and triangle fans
 - compression schemes for transmission to hardware
- Triangle-neighbor data structure
 - supports adjacency queries
- Winged-edge data structure
 - supports general polygon meshes

Separate triangles

- array of triples of points
 - float[nT][3][3]: about 72 bytes per vertex
 - 2 triangles per vertex (on average)
 - 3 vertices per triangle
 - 3 coordinates per vertex
 - 4 bytes per coordinate (float)
- various problems
 - wastes space (each vertex stored 6 times)
 - cracks due to round-off
 - difficulty of finding neighbors at all

Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices
Indexed triangle set

- array of vertex positions
 - float[nV][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of triples of indices (per triangle)
 - int[nT][3]: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
 - total storage: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined

Indexed triangle set

- array of vertex positions
 - float[nV][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of triples of indices (per triangle)
 - int[nT][3]: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
 - total storage: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined

Triangle strips

- Take advantage of the mesh property
 - each triangle is usually adjacent to the previous
 - let every vertex create a triangle by reusing the second and third vertices of the previous triangle
 - every sequence of three vertices produces a triangle (but not in the same order)
 - e.g., 0, 1, 2, 3, 4, 5, 6, 7, ... leads to
 - (0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), ...
 - for long strips, this requires about one index per triangle

Triangle strips

- Take advantage of the mesh property
 - each triangle is usually adjacent to the previous
 - let every vertex create a triangle by reusing the second and third vertices of the previous triangle
 - every sequence of three vertices produces a triangle (but not in the same order)
 - e.g., 0, 1, 2, 3, 4, 5, 6, 7, ... leads to
 - (0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), ...
 - for long strips, this requires about one index per triangle
Triangle strips

- array of vertex positions
 - float[nV][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of index lists
 - int[nS][variable]: 2 + n indices per strip
 - on average, (1 + ε) indices per triangle (assuming long strips)
 - 2 triangles per vertex (on average)
 - about 4 bytes per triangle (on average)
- total is 20 bytes per vertex (limiting best case)
 - factor of 3.6 over separate triangles; 1.8 over indexed mesh

Triangle fans

- Same idea as triangle strips, but keep oldest rather than newest
 - every sequence of three vertices produces a triangle
 - e.g., 0, 1, 2, 3, 4, 5, ... leads to
 - (0 1 2), (0 2 3), (0 3 4), (0 4 5), ...
 - for long fans, this requires about one index per triangle
 - Memory considerations exactly the same as triangle strip

Triangle neighbor structure

- Extension to indexed triangle set
- Triangle points to its three neighboring triangles
- Vertex points to a single neighboring triangle
- Can now enumerate triangles around a vertex
Triangle neighbor structure

- indexed mesh was 36 bytes per vertex
- add an array of triples of indices (per triangle)
 - int[nt][3]: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
- total storage: 60 bytes per vertex
 - still not as much as separate triangles

Winged-edge mesh

- Edge-centric rather than face-centric
 - therefore also works for polygon meshes
- Each (oriented) edge points to:
 - left and right forward edges
 - left and right backward edges
 - front and back vertices
 - left and right faces
- Each face or vertex points to one edge

Winged-edge structure

- array of vertex positions: 12 bytes/vert
- array of 8-tuples of indices (per edge)
 - head/tail left/right edges + head/tail verts + left/right tris
 - int[ne][8]: about 96 bytes per vertex
 - 3 edges per vertex (on average)
 - (8 indices x 4 bytes) per edge
- total storage: 108 bytes per vertex
 - so this is more complex than neighbor pointers
 - but it is cleaner and generalizes to polygon meshes
Half-edge Mesh

- Edge-centric rather than face-centric
- Half-edge version of winged-edge
- Each (oriented) half-edge points to:
 - next edge
 - opposite edge
 - head vertex
 - left face

- Each face points to one edge
- Each vertex points to one incident edge
- Same storage requirements as winged-edge
 - Different interface

[From CGAL]

Mesh Compression

- Increasingly desirable
- Getting better all the time:
 - Topology (<1 bit/vertex)
 - Geometry (<6 bits/vertex)

St. Matthew scan
(>370 million triangles)
The Digital Michelangelo Project