Announcements

- **CS 466 Computer Graphics Practicum!**
 - *Register ASAP!*
 - Additional fun programming assignments
 - Subdivision surfaces
 - Full-featured ray tracer
 - Meets Wednesday after class (pending conflicts)
 - Hollister 110 (trying to change…)
 - CSUG Computer Graphics Instructional Laboratory (Rhodes 455)
- **TAs:** Yin Wang, Yi Xu, and undergrads (TBA)
- **Textbook** (Shirley et al., 2nd edition)

Computer graphics: The study of creating, manipulating, and using visual images in the computer.
Problems in graphics

- 2D imaging
 - compositing and layering
 - digital filtering
 - color transformations
- 2D drawing
 - illustration, drafting
 - text, GUIs

Problems in graphics CONT’D

- 3D modeling
 - representing 3D shapes
 - polygons, curved surfaces, …
 - procedural modeling

• 3D rendering
 - 2D views of 3D geometry
 - projection and perspective
 - removing hidden surfaces
 - lighting simulation
Problems in graphics CONT'D

- User Interaction
 - 2D graphical user interfaces
 - 3D modeling interfaces
 - virtual reality

Temporal modeling
- Enright et al. SIGGRAPH 2003

- Animation
 - keyframe animation
 - physical simulation
Computer graphics: Mathematics made visible.

Graphics Applications

- Entertainment
 - film production
 - film effects
 - games
- Science and engineering
 - computer-aided design
 - scientific visualization
- Training & Simulation
- Graphic Arts
- Fine Art
Graphics Applications

- Entertainment
 - film production
 - film effects
 - games
- Science and engineering
 - computer-aided design
 - scientific visualization
- Training & Simulation
- Graphic Arts
- Fine Art
Graphics Applications

• Entertainment
 – film production
 – film effects
 – games
• Science and engineering
 – computer-aided design
 – scientific visualization
• Training & Simulation
• Graphic Arts
• Fine Art

In this course

• You will:
 – explore fundamental ideas
 – learn math essential to graphics
 – implement key algorithms
 – write cool programs
• You will not:
 – learn a lot about OpenGL or DirectX
 (though you will use some OpenGL)
 – write big programs

Course Overview
Topics

- Rendering 3D scenes
 (ray tracing as the basic model)
- Images and image processing
 (featuring sampling and reconstruction)
- Geometric transformations
- The graphics pipeline
 (with a slant toward understanding graphics hardware)
- Modeling in 2D and 3D
- Color science

Images

- What is an image?
- Compositing
- Resampling

Rendering

- ray tracing
- shading & shadows
- transparency
- texture mapping

Geometric transformations

- affine transforms
- perspective transforms
- viewing

rotate, then translate

translate, then rotate
Geometric Transformations

Dreamworks/Paramount—Transformers (screenshot: www.transformersmovie.com)

Graphics pipeline

- rasterization
- interpolation
- z-buffer
- vertex and fragment ops

Modeling

- splines
- parametric surfaces
- triangle meshes

Prerequisites

- Programming
 - ability to read, write, and debug small Java programs (10s of classes)
 - understanding of very basic data structures
 - no serious software design required

- Mathematics
 - vector geometry (dot/cross products, etc.)
 - linear algebra (just basic matrices in 2-4D)
 - basic calculus (simple derivatives)
 - graphics is a good place to pick up some, but not all, of this
Course mechanics

See web site: