Ray Tracing Il

CS 465 Lecture 18

Cornell C5465 Fall 2006 + Lecture 18

© 2006 Steve Marschoer *

Topics

* Transformations in ray tracing
— Transforming objects
— Transformation hierarchies
* Ray tracing acceleration structures
— Bounding volumes
— Bounding volume hierarchies
~ Uniform spatial subdivision
— Adaptive spatial subdivision
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Transforming objects

* In modeling, we've seen the usefulness of
transformations
-~ How to do the same in RT?

* Take spheres as an example: want to support
transformed spheres
- Need a new Surface subclass

* Option |: transform sphere into world coordinates
— Write code to intersect arbitrary ellipsoids

* Option 2: transform ray into sphere’s coordinates
— Then just use existing sphere intersection routine
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Intersecting transformed objects
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Implementing RT transforms

* Create wrapper object “TrasformedSurface”
— Has a transform T and a reference to a surface S
— To intersect:
* Transform ray to local coords (by inverse of T)
* Call surface.intersect
* Transform hit data back to global coords (by T)
— Intersection point
— Surface normal
— Any other relevant data (maybe none)
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Groups, transforms, hierarchies

» Often it's useful to transform several objects at once
— Add “SurfaceGroup™ as a subclass of Surface
* Has a list of surfaces
* Returns closest intersection
- Opportunity to move ray intersection code here to
avoid duplication
* With TransformedSurface and SurfaceGroup you can
put transforms below transforms
— Voila! A transformation hierarchy.
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A transformation hierarchy
_Transform
Group: car

[Surfaoé: body| Transform |

~ Group: wheel assy. |

_ Surface: brake disc | | Transform
" Group: wheel |

" Surface: tire | | Surface: hubcap |

— Common optimization: merge transforms with groups
* This is how we did it in the modeler assignment
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Instancing

* Anything worth doing is worth doing n times

* If we can transform objects, why not transform them
several ways?
— Many models have repeated subassemblies
* Mechanical parts (wheels of car)
* Multiple objects (chairs in classroom, ...)

— Nothing stops you from creating two TransformedSurface
objects that reference the same Surface

* Allowing this makes the transformation tree into a DAG
— (directed acyclic graph)
* Mostly this is transparent to the renderer
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Hierarchy with instancing

_ Transform
_Group: car

'Surface: body| | Transform | | Transform | | Tranéfo‘r'm”]
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Hierarchies and performance

* Transforming rays is expensive
— minimize tree depth: flatten on input
* push all transformations toward leaves
* triangle meshes may do best to stay as group
— transform ray once, intersect with mesh
— internal group nodes still required for instancing
* can't push two transforms down to same child!
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Ray tracing acceleration

* Ray tracing is slow. This is bad!
— Ray tracers spend most of their time in ray-surface
intersection methods
* Ways to improve speed
— Make intersection methods more efficient
* Yes, good idea. But only gets you so far
— Call intersection methods fewer times
* Intersecting every ray with every object is wasteful

* Basic strategy: efficiently find big chunks of geometry that
definitely do not intersect a ray
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Bounding volumes

* Quick way to avoid intersections: bound object with a
simple volume
— Object is fully contained in the volume
— If it doesn't hit the volume, it doesn't hit the object
— So test bvol first, then test object if it hits
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Bounding volumes

* Cost: more for hits and near misses, less for far misses
* Worth doing? It depends:

— Cost of bvol intersection test should be small
* Therefore use simple shapes (spheres, boxes, ...)
— Cost of object intersect test should be large
*» Bvols most useful for complex objects
— Tightness of fit should be good
* Loose fit leads to extra object intersections
* Tradeoff between tightness and bvol intersection cost
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Implementing bounding volume

* Just add new Surface subclass, “BoundedSurface”
— Contains a bounding volume and a reference to a surface
— Intersection method:
* Intersect with bvol, return false for miss
* Return surface.intersect(ray)
— Like transformations, common to merge with group
— This change is transparent to the renderer (only it might run
faster)
* Note that all Surfaces will need to be able to supply
bounding volumes for themselves

Cornell C5465 Fall 2006 + Lecture 18 © 2006 Steve Marschner = I«

If it’s worth doing, it’s worth doing
hierarchically!

* Bvols around objects may help
* Bvols around groups of objects will help
* Bvols around parts of complex objects will help

* Leads to the idea of using bounding volumes all the
way from the whole scene down to groups of a few
objects
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Implementing a bvol hierarchy

* A BoundedSurface can contain a list of Surfaces

* Some of those Surfaces might be more
BoundedSurfaces

* Voila! A bounding volume hierarchy
— And it's all still transparent to the renderer
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BVH construction example
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BVH construction example
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BVH construction example
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BVH construction example
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BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example
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BVH ray-tracing example
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Choice of bounding volumes

* Spheres -- easy to intersect, not always so tight

* Axis-aligned bounding boxes (AABBs) -- easy to
intersect, often tighter (esp. for axis-aligned models)

* Oriented bounding boxes (OBBs) -- easy to intersect
(but cost of transformation), tighter for arbitrary

objects
* Computing the bvols
— For primitives -- generally pretty easy

— For groups -- not so easy for OBBs (to do well)

— For transformed surfaces -- not so easy for spheres
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AXxis aligned bounding boxes

* Probably easiest to implement
* Computing for primitives
- Cube: duh!
— Sphere, cylinder, etc.: pretty obvious

— Groups or meshes: min/max of component parts

* AABB:s for transformed surface

— Easy to do conservatively: bbox of the 8 corners of the

bbox of the untransformed surface
* How to intersect them

— Treat them as an intersection of slabs (see Shirley)
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Intersecting boxes
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Building a hierarchy

* Usually do it top-down

* Make bbox for whole scene, then split into (maybe 2)
parts
— Recurse on parts
~ Stop when there are just a few objects in your box
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Building a hierarchy

* How to partition?
— ldeal: clusters
— Practical: partition along axis
* Median partition
—~ More expensive
— More balanced tree
* Center partition
— Less expensive, simpler
— Unbalanced tree, but that may actually be better
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Regular space subdivision

* An entirely different approach: uniform grid of cells
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Regular grid example

* Grid divides space, not objects
i ‘
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Traversing a regular grid
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Non-regular space subdivision

* k-d Tree
- subdivides space, like grid
— adaptive, like BVH
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Non-regular space subdivision

* k-d Tree
- subdivides space, like grid
— adaptive, like BVH
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Non-regular space subdivision Implementing acceleration structures

* k-d Tree * Conceptually simple to build acceleration structure
- subdivides space, like grid into scene structure
— adaptive, like BVH * Better engineering decision to separate them
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