2D Spline Curves

CS 465 Lecture 11

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner

Motivation: smoothness

- · In many applications we need smooth shapes
 - that is, without discontinuities

- · So far we can make
 - things with corners (lines, squares, rectangles, ...)
 - circles and ellipses (only get you so far!)

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner

Classical approach

- · Pencil-and-paper draftsmen also needed smooth curves
- · Origin of "spline:" strip of flexible metal
 - held in place by pegs or weights to constrain shape
 - traced to produce smooth contour

Translating into usable math

- Smoothness
 - in drafting spline, comes from physical curvature minimization
 - in CG spline, comes from choosing smooth functions
 - · usually low-order polynomials
- Control
 - in drafting spline, comes from fixed pegs
 - in CG spline, comes from user-specified control points

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner

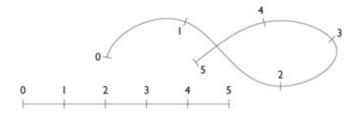
Cornell CS465 Fall 2006 • Lecture 11

Defining spline curves

• At the most general they are parametric curves

$$S = \{ \mathbf{p}(t) \, | \, t \in [0, N] \}$$

- Generally f(t) is a piecewise polynomial
 - for this lecture, the discontinuities are at the integers



Cornell CS465 Fall 2006 • Lecture 11

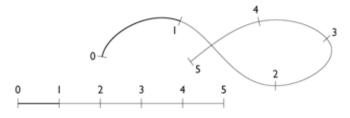
© 2006 Steve Marschner

Defining spline curves

• At the most general they are parametric curves

$$S = \{ \mathbf{p}(t) \, | \, t \in [0, N] \}$$

- Generally f(t) is a piecewise polynomial
 - for this lecture, the discontinuities are at the integers



Cornell CS465 Fall 2006 • Lecture 11

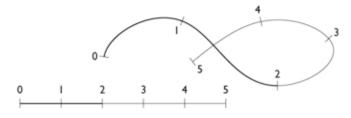
© 2006 Steve Marschner

Defining spline curves

• At the most general they are parametric curves

$$S = \{ \mathbf{p}(t) \, | \, t \in [0, N] \}$$

- Generally f(t) is a piecewise polynomial
 - for this lecture, the discontinuities are at the integers



Cornell CS465 Fall 2006 • Lecture 11

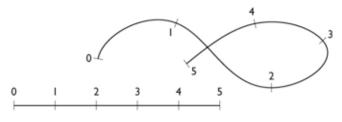
© 2006 Steve Marschner

Defining spline curves

• At the most general they are parametric curves

$$S = \{ \mathbf{p}(t) \, | \, t \in [0, N] \}$$

- Generally f(t) is a piecewise polynomial
 - for this lecture, the discontinuities are at the integers



Cornell CS465 Fall 2006 • Lecture 11

Defining spline curves

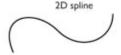
- · Generally f(t) is a piecewise polynomial
 - for this lecture, the discontinuities are at the integers
 - e.g., a cubic spline has the following form over [k, k + 1]:

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$

$$y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

- Coefficients are different for every interval

Coordinate functions



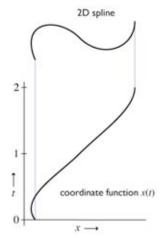
Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner

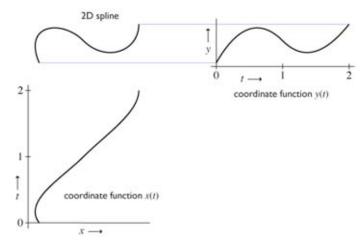
Coordinate functions



Cornell CS465 Fall 2006 • Lecture 11

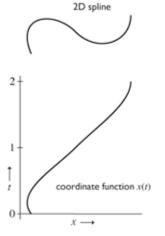
© 2006 Steve Marschner

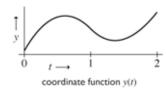
Coordinate functions



Cornell CS465 Fall 2006 • Lecture 11

Coordinate functions





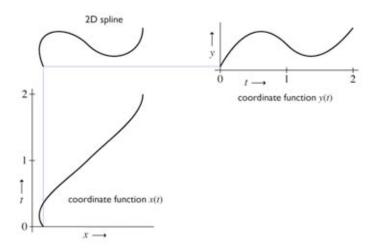
Cornell CS465 Fall 2006 • Lecture 11

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner

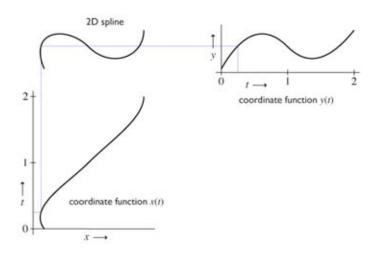
© 2006 Steve Marschner

Coordinate functions

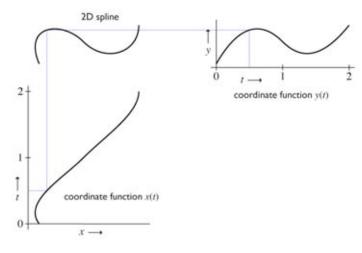


Cornell CS465 Fall 2006 • Lecture I I © 2006 Steve Marschner

Coordinate functions

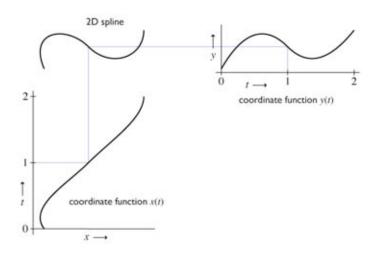


Coordinate functions

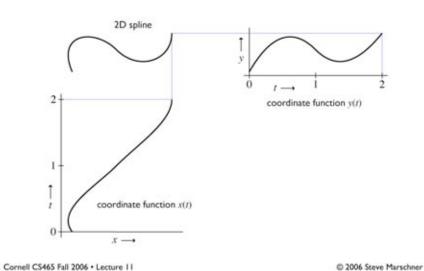


Cornell CS465 Fall 2006 • Lecture 11

Coordinate functions



© 2006 Steve Marschner



Control of spline curves

Cornell CS465 Fall 2006 • Lecture 11

- · Specified by a sequence of control points
- · Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points

Control of spline curves

- · Specified by a sequence of control points
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points

Cornell CS465 Fall 2006 • Lecture 11

Control of spline curves

- · Specified by a sequence of control points
- · Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner

Control of spline curves

- · Specified by a sequence of control points
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points

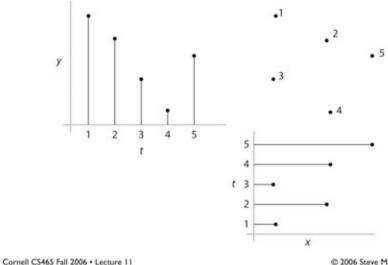
Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner

How splines depend on their controls

- Each coordinate is separate
 - the function x(t) is determined solely by the x coordinates of the control points
 - this means ID, 2D, 3D, ... curves are all really the same
- Spline curves are linear functions of their controls
 - moving a control point two inches to the right moves x(t) twice as far as moving it by one inch
 - -x(t), for fixed t, is a linear combination (weighted sum) of the control points' x coordinates
 - $-\mathbf{p}(t)$, for fixed t, is a linear combination (weighted sum) of the control points

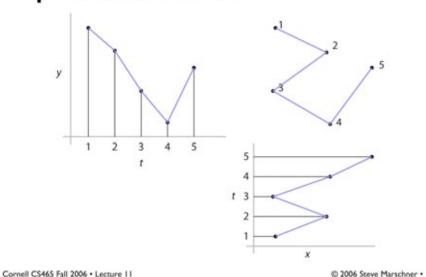
Splines as reconstruction



Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Splines as reconstruction



Trivial example: piecewise linear

- · This spline is just a polygon
 - control points are the vertices
- · But we can derive it anyway as an illustration
- · Each interval will be a linear function

$$-x(t) = at + b$$

- constraints are values at endpoints

$$-b = x_0$$
; $a = x_1 - x_0$

- this is linear interpolation

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Trivial example: piecewise linear

· Vector formulation

$$x(t) = (x_1 - x_0)t + x_0$$

$$y(t) = (y_1 - y_0)t + y_0$$

$$\mathbf{p}(t) = (\mathbf{p}_1 - \mathbf{p}_0)t + \mathbf{p}_0$$

· Matrix formulation

$$\mathbf{p}(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

Trivial example: piecewise linear

- · Basis function formulation
 - regroup expression by **p** rather than t

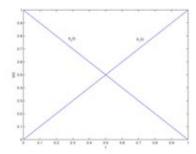
$$\mathbf{p}(t) = (\mathbf{p}_1 - \mathbf{p}_0)t + \mathbf{p}_0$$
$$= (1 - t)\mathbf{p}_0 + t\mathbf{p}_1$$

- interpretation in matrix viewpoint

$$\mathbf{p}(t) = \begin{pmatrix} \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

Trivial example: piecewise linear

- · Vector blending formulation: "average of points"
 - blending functions: contribution of each point as t changes



Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Trivial example: piecewise linear

- · Basis function formulation: "function times point"
 - basis functions: contribution of each point as t changes

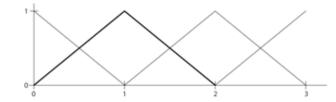
- can think of them as blending functions glued together
- this is just like a reconstruction filter!

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Trivial example: piecewise linear

- · Basis function formulation: "function times point"
 - basis functions: contribution of each point as t changes



- can think of them as blending functions glued together
- this is just like a reconstruction filter!

Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
 - to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
 - what are x(t) and y(t)?
 - then move one control straight up

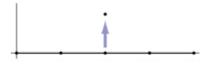
Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Cornell CS465 Fall 2006 • Lecture 11

Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
 - to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
 - what are x(t) and y(t)?
 - then move one control straight up

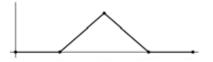


Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Seeing the basis functions

- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
 - to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
 - what are x(t) and y(t)?
 - then move one control straight up

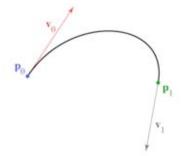


Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Hermite splines

- · Less trivial example
- · Form of curve: piecewise cubic
- · Constraints: endpoints and tangents (derivatives)



Hermite splines

· Solve constraints to find coefficients

$$x(t) = at^{3} + bt^{2} + ct + d$$

$$x'(t) = 3at^{2} + 2bt + c$$

$$x(0) = x_{0} = d$$

$$x(1) = x_{1} = a + b + c + d$$

$$x'(0) = x'_{0} = c$$

$$x'(1) = x'_{1} = 3a + 2b + c$$

$$d = x_{0}$$

$$c = x'_{0}$$

$$a = 2x_{0} - 2x_{1} + x'_{0} + x'_{1}$$

$$b = -3x_{0} + 3x_{1} - 2x'_{0} - x'_{1}$$

Hermite splines

· Matrix form is much simpler

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix}$$

- cofficients = rows
- basis functions = columns
 - note **p** columns sum to [0 0 0 1]^T

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

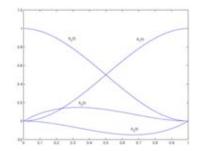
Longer Hermite splines

- · Can only do so much with one Hermite spline
- · Can use these splines as segments of a longer curve
 - curve from t = 0 to t = 1 defined by first segment
 - curve from t = 1 to t = 2 defined by second segment
- · To avoid discontinuity, match derivatives at junctions
 - this produces a C¹ curve

Cornell CS465 Fall 2006 • Lecture I I © 2006 Steve Marschner •

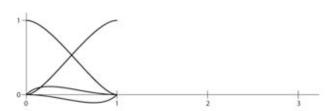
Hermite splines

· Hermite blending functions



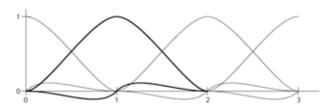
Hermite splines

• Hermite basis functions



Hermite splines

Hermite basis functions

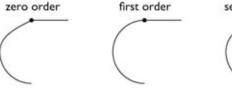


Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Continuity

- · Smoothness can be described by degree of continuity
 - zero-order (C0): position matches from both sides
 - first-order (C1): tangent matches from both sides
 - second-order (C2): curvature matches from both sides
 - Gn vs. Cn



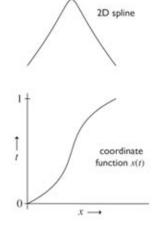
Cornell CS465 Fall 2006 • Lecture 11

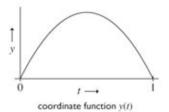
© 2006 Steve Marschner •

Continuity

- Parametric continuity (C) of spline is continuity of coordinate functions
- Geometric continuity (G) is continuity of the curve itself
- · Neither form of continuity is guaranteed by the other
 - Can be C^1 but not G^1 when $\mathbf{p}(t)$ comes to a halt (next slide)
 - Can be G^I but not C^I when the tangent vector changes length abruptly

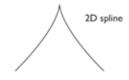
Geometric vs. parametric continuity

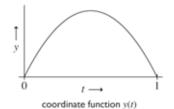




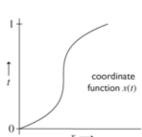
Cornell CS465 Fall 2006 • Lecture 11

Geometric vs. parametric continuity



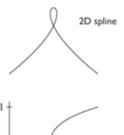


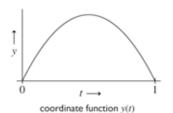
© 2006 Steve Marschner •

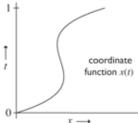


Cornell CS465 Fall 2006 • Lecture 11 © 2006 Steve Marschner •

Geometric vs. parametric continuity







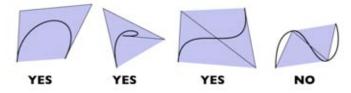
Cornell CS465 Fall 2006 • Lecture I I © 2006 Steve Marschner •

Control

- · Local control
 - changing control point only affects a limited part of spline
 - without this, splines are very difficult to use
 - many likely formulations lack this
 - natural spline
 - · polynomial fits

Control

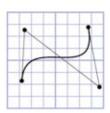
- · Convex hull property
 - convex hull = smallest convex region containing points
 - · think of a rubber band around some pins
 - some splines stay inside convex hull of control points
 - · make clipping, culling, picking, etc. simpler

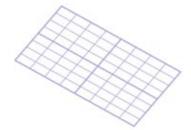


Cornell CS465 Fall 2006 • Lecture 11

Affine invariance

- Transforming the control points is the same as transforming the curve
 - true for all commonly used splines
 - extremely convenient in practice...



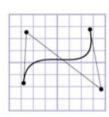


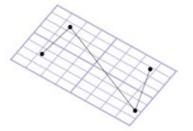
Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Affine invariance

- Transforming the control points is the same as transforming the curve
 - true for all commonly used splines
 - extremely convenient in practice...



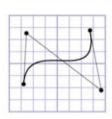


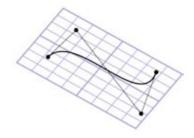
Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Affine invariance

- Transforming the control points is the same as transforming the curve
 - true for all commonly used splines
 - extremely convenient in practice...





Matrix form of spline

$$\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$

$$\mathbf{p}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$$

Matrix form of spline

$$\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$

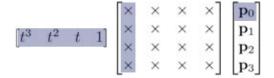
$$\mathbf{p}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$$

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Matrix form of spline

$$\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$



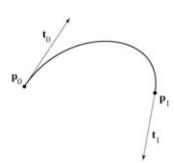
$$\mathbf{p}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$$

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Hermite splines

 Constraints are endpoints and endpoint tangents

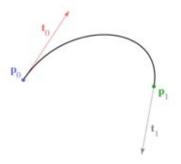


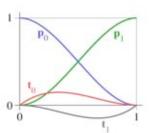
$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix}$$

Cornell CS465 Fall 2006 • Lecture 11

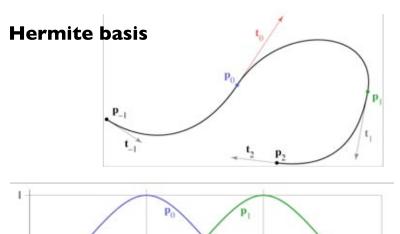
© 2006 Steve Marschner •

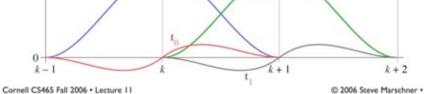
Hermite basis





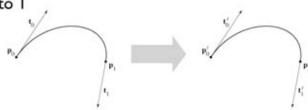
Cornell CS465 Fall 2006 • Lecture 11





Affine invariance

 Basis functions associated with points should always sum to I



$$\mathbf{p}(t) = b_0 \mathbf{p}_0 + b_1 \mathbf{p}_1 + b_2 \mathbf{v}_0 + b_3 \mathbf{v}_1$$

$$\mathbf{p}'(t) = b_0 (\mathbf{p}_0 + \mathbf{u}) + b_1 (\mathbf{p}_1 + \mathbf{u}) + b_2 \mathbf{v}_0 + b_3 \mathbf{v}_1$$

$$= b_0 \mathbf{p}_0 + b_1 \mathbf{p}_1 + b_2 \mathbf{v}_0 + b_3 \mathbf{v}_1 + (b_0 + b_1) \mathbf{u}$$

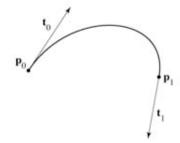
$$= \mathbf{p}(t) + \mathbf{u}$$

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Hermite to Bézier

- · Mixture of points and vectors is awkward
- · Specify tangents as differences of points



Hermite to Bézier

- · Mixture of points and vectors is awkward
- · Specify tangents as differences of points

Hermite to Bézier

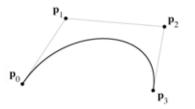
- · Mixture of points and vectors is awkward
- · Specify tangents as differences of points

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Hermite to Bézier

- · Mixture of points and vectors is awkward
- · Specify tangents as differences of points



- note derivative is defined as 3 times offset

• reason is illustrated by linear case

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Hermite to Bézier

$$\mathbf{p}_0 = \mathbf{q}_0$$

 $\mathbf{p}_1 = \mathbf{q}_3$
 $\mathbf{v}_0 = 3(\mathbf{q}_1 - \mathbf{q}_0)$
 $\mathbf{v}_1 = 3(\mathbf{q}_3 - \mathbf{q}_2)$

$$\begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{q}_1 \\ \mathbf{q}_2 \\ \mathbf{q}_3 \end{bmatrix}$$

Hermite to Bézier

$$\mathbf{p}_0 = \mathbf{q}_0$$

 $\mathbf{p}_1 = \mathbf{q}_3$
 $\mathbf{v}_0 = 3(\mathbf{q}_1 - \mathbf{q}_0)$
 $\mathbf{v}_1 = 3(\mathbf{q}_3 - \mathbf{q}_2)$

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{q}_1 \\ \mathbf{q}_2 \\ \mathbf{q}_3 \end{bmatrix}$$

Hermite to Bézier

$$\mathbf{p}_0 = \mathbf{q}_0$$

 $\mathbf{p}_1 = \mathbf{q}_3$
 $\mathbf{v}_0 = 3(\mathbf{q}_1 - \mathbf{q}_0)$
 $\mathbf{v}_1 = 3(\mathbf{q}_3 - \mathbf{q}_2)$

a b	=	$\begin{bmatrix} -1 \\ 3 \end{bmatrix}$	$\frac{3}{-6}$	$-3 \\ 3$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix}\mathbf{q}_0\\\mathbf{q}_1\\\mathbf{q}_2\\\mathbf{q}_3\end{bmatrix}$
c		- 3	3	0	0	\mathbf{q}_2
لطا		L	U	U	ο٦	

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Bézier matrix

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}$$

- note that these are the Bernstein polynomials

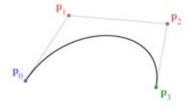
$$C(n,k) t^k (1-t)^{n-k}$$

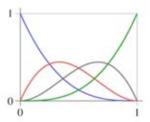
and that defines Bézier curves for any degree

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

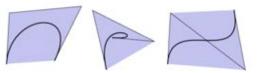
Bézier basis





Convex hull

- If basis functions are all positive, the spline has the convex hull property
 - we're still requiring them to sum to I



- if any basis function is ever negative, no convex hull prop.
 - · proof: take the other three points at the same place

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Cornell CS465 Fall 2006 • Lecture 11

Chaining spline segments

- Hermite curves are convenient because they can be made long easily
- Bézier curves are convenient because their controls are all points and they have nice properties
 - and they interpolate every 4th point, which is a little odd
- We derived Bézier from Hermite by defining tangents from control points
 - a similar construction leads to the interpolating Catmull-Rom spline

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

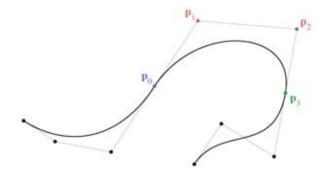
Chaining Bézier splines

- · No continuity built in
- Achieve C¹ using collinear control points

Cornell CS465 Fall 2006 • Lecture 11 © 2006 Steve Marschner •

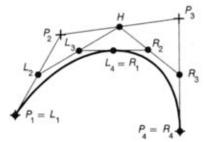
Chaining Bézier splines

- · No continuity built in
- Achieve C¹ using collinear control points



Subdivision

 A Bézier spline segment can be split into a twosegment curve:



- de Casteljau's algorithm
- also works for arbitrary t

Cornell CS465 Fall 2006 • Lecture 11

Cornell CS465 Fall 2006 • Lecture 11 © 2006 Steve Marschner •

Cubic Bézier splines

- · Very widely used type, especially in 2D
 - e.g. it is a primitive in PostScript/PDF
- · Can represent C¹ and/or G¹ curves with corners
- · Can easily add points at any position
- · Illustrator demo

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Hermite to Catmull-Rom

- · Have not yet seen any interpolating splines
- · Would like to define tangents automatically
 - use adjacent control points

•

•

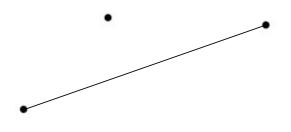
- end tangents: extra points or zero

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Hermite to Catmull-Rom

- · Have not yet seen any interpolating splines
- · Would like to define tangents automatically
 - use adjacent control points



- end tangents: extra points or zero

Cornell CS465 Fall 2006 • Lecture 11 © 2006 Steve Marschner •

Hermite to Catmull-Rom

- · Have not yet seen any interpolating splines
- · Would like to define tangents automatically

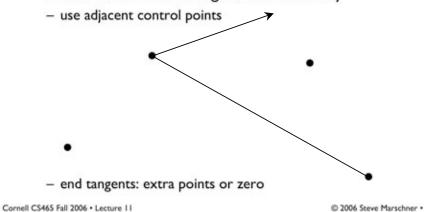
•

- end tangents: extra points or zero

Cornell CS465 Fall 2006 • Lecture 11

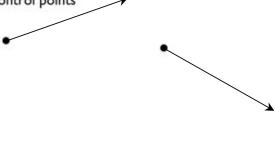
Hermite to Catmull-Rom

- · Have not yet seen any interpolating splines
- · Would like to define tangents automatically



Hermite to Catmull-Rom

- · Have not yet seen any interpolating splines
- · Would like to define tangents automatically
 - use adjacent control points



- end tangents: extra points or zero

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Hermite to Catmull-Rom

Cornell CS465 Fall 2006 • Lecture 11

- · Have not yet seen any interpolating splines
- · Would like to define tangents automatically



© 2006 Steve Marschner •

Hermite to Catmull-Rom

- Tangents are (p_{k+1} p_{k-1}) / 2
 - scaling based on same argument about collinear case

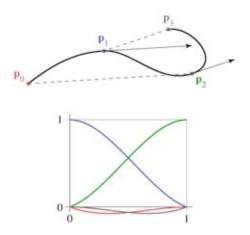
$$\mathbf{p}_0 = \mathbf{q}_k$$

 $\mathbf{p}_1 = \mathbf{q}_k + 1$
 $\mathbf{v}_0 = 0.5(\mathbf{q}_{k+1} - \mathbf{q}_{k-1})$
 $\mathbf{v}_1 = 0.5(\mathbf{q}_{k+2} - \mathbf{q}_K)$

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -.5 & 0 & .5 & 0 \\ 0 & -.5 & 0 & .5 \end{bmatrix} \begin{bmatrix} \mathbf{q}_{k-1} \\ \mathbf{q}_k \\ \mathbf{q}_{k+1} \\ \mathbf{q}_{k+2} \end{bmatrix}$$

Cornell CS465 Fall 2006 • Lecture 11

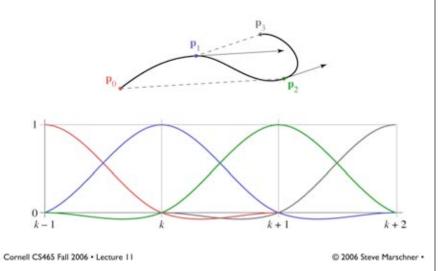
Catmull-Rom basis



Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Catmull-Rom basis



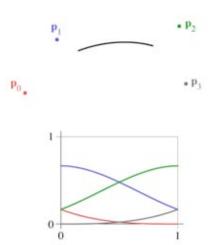
Catmull-Rom splines

- · Our first example of an interpolating spline
- · Like Bézier, equivalent to Hermite
 - in fact, all splines of this form are equivalent
- First example of a spline based on just a control point sequence
- · Does not have convex hull property

B-splines

- We may want more continuity than C¹
- · We may not need an interpolating spline
- B-splines are a clean, flexible way of making long splines with arbitrary order of continuity
- · Various ways to think of construction
 - a simple one is convolution
 - relationship to sampling and reconstruction

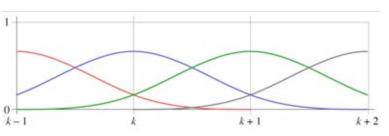
Cubic B-spline basis



Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Cubic B-spline basis



Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Deriving the B-Spline

- Approached from a different tack than Hermite-style constraints
 - Want a cubic spline; therefore 4 active control points
 - Want C² continuity
 - Turns out that is enough to determine everything

Efficient construction of any B-spline

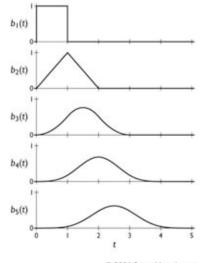
- · B-splines defined for all orders
 - order d: degree d I
 - order d: d points contribute to value
- · One definition: Cox-deBoor recurrence

$$b_1 = \begin{cases} 1 & 0 \le u < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$b_d = \frac{t}{d-1}b_{d-1}(t) + \frac{d-t}{d-1}b_{d-1}(t-1)$$

B-spline construction, alternate view

- Recurrence
 - ramp up/down
- Convolution
 - smoothing of basis fn
 - smoothing of curve



Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Cubic B-spline matrix

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k-1} \\ \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \mathbf{p}_{k+2} \end{bmatrix}$$

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner .

Other types of B-splines

- Nonuniform B-splines
 - discontinuities not evenly spaced
 - allows control over continuity or interpolation at certain points
 - e.g. interpolate endpoints (commonly used case)
- Nonuniform Rational B-splines (NURBS)
 - ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)
 - key properties:
 - · invariance under perspective as well as affine
 - · ability to represent conic sections exactly

Converting spline representations

- · All the splines we have seen so far are equivalent
 - all represented by geometry matrices

$$\mathbf{p}_S(t) = T(t)M_SP_S$$

- · where S represents the type of spline
- therefore the control points may be transformed from one type to another using matrix multiplication

$$P_1 = M_1^{-1} M_2 P_2$$

$$\mathbf{p}_1(t) = T(t)M_1(M_1^{-1}M_2P_2)$$

= $T(t)M_2P_2 = \mathbf{p}_2(t)$

Evaluating splines for display

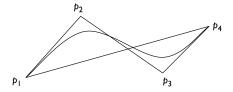
- · Need to generate a list of line segments to draw
 - generate efficiently
 - use as few as possible
 - guarantee approximation accuracy
- Approaches
 - reccursive subdivision (easy to do adaptively)
 - uniform sampling (easy to do efficiently)

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria
 - distance between control points
 - distance of control points from line

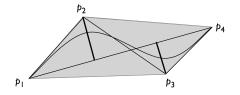


Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria
 - distance between control points
 - distance of control points from line



Evaluating with uniform spacing

- · Forward differencing
 - efficiently generate points for uniformly spaced t values
 - evaluate polynomials using repeated differences

Cornell CS465 Fall 2006 • Lecture 11

© 2006 Steve Marschner •

Cornell CS465 Fall 2006 • Lecture 11