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Motivation: smoothness

* In many applications we need smooth shapes

— that is, without discontinuities

.\ \
.“\ \: . .

* So far we can make

~ things with corners (lines, squares, rectangles, ...

— circles and ellipses (only get you so far!)

Cornell C5465 Fall 2006 « Lecture | 1

(Bocing)

)

© 2006 Steve Marschner

Classical approach

* Pencil-and-paper draftsmen also needed smooth curves
* Origin of “spline:” strip of flexible metal
— held in place by pegs or weights to constrain shape
— traced to produce smooth contour
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Translating into usable math

* Smoothness

~ in drafting spline, comes from physical curvature

minimization

— in CG spline, comes from choosing smooth functions

* usually low-order polynomials

* Control
— in drafting spline, comes from fixed pegs

- in CG spline, comes from user-specified control points
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Defining spline curves

* At the most general they are parametric curves

S ={p(t)|t € [0,N]}

* Generally f(t) is a piecewise polynomial

— for this lecture, the discontinuities are at the integers
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Defining spline curves

* At the most general they are parametric curves

S ={p(t)|t € [0,N]}

* Generally f(t) is a piecewise polynomial
— for this lecture, the discontinuities are at the integers
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Defining spline curves

* Generally f(t) is a piecewise polynomial
~ for this lecture, the discontinuities are at the integers
- e.g., a cubic spline has the following form over [k, k + I]:

z(t) = azt® + bgt® + cxpt + dy
y(t) = (zyf3 - 1)!,f2 + cyt + dy

— Coefficients are different for every interval
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Coordinate functions

2D spline

aw
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Coordinate functions

2D spline

T

] coordinate function x(7)
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Coordinate functions
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Coordinate functions
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Coordinate functions

2D spline
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Control of spline curves

*» Specified by a sequence of control points
* Shape is guided by control points (aka control polygon)
— interpolating: passes through points

— approximating: merely guided by points
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How splines depend on their controls

* Each coordinate is separate
— the function x(t) is determined solely by the x coordinates of
the control points
— this means 1D, 2D, 3D, ... curves are all really the same

* Spline curves are linear functions of their controls
~ moving a control point two inches to the right moves x(t)
twice as far as moving it by one inch

~ x(t), for fixed t, is a linear combination (weighted sum) of the
control points’ x coordinates

— p(t), for fixed t, is a linear combination (weighted sum) of
the control points
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Splines as reconstruction
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Trivial example: piecewise linear

* This spline is just a polygon
— control points are the vertices

* But we can derive it anyway as an illustration

* Each interval will be a linear function -
- x()=at+b
— constraints are values at endpoints
-b=xp;a=x—xg
— this is linear interpolation !
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Trivial example: piecewise linear
* Vector formulation

z(t) = (1 — xo)t + o

y(t) = (y1 — yo)t + yo

p(t) = (P1 — Po)t + Po

* Matrix formulation
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Trivial example: piecewise linear

* Basis function formulation
— regroup expression by p rather than t

p(t) = (pP1 — Po)t + Po
= (1 —t)po + tp1

— interpretation in matrix viewpoint

= (It 1[5 ]) [
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Trivial example: piecewise linear

* Vector blending formulation: “average of points”
- blending functions: contribution of each point as t changes
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Trivial example: piecewise linear

* Basis function formulation: “function times point”
~ basis functions: contribution of each point as t changes

0
0 ' 2 3

— can think of them as blending functions glued together
— this is just like a reconstruction filter!
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Trivial example: piecewise linear

* Basis function formulation: “function times point”
~ basis functions: contribution of each point as t changes
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— can think of them as blending functions glued together
— this is just like a reconstruction filter!

Cornell C5465 Fall 2006 « Lecture | 1 © 2006 Steve Marschner *

Seeing the basis functions

* Basis functions of a spline are revealed by how the
curve changes in response to a change in one control

— to get a graph of the basis function, start with the curve laid
out in a straight, constant-speed line

* what are x(t) and y(t)?
— then move one control straight up
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Hermite splines

* Less trivial example
* Form of curve: piecewise cubic
* Constraints: endpoints and tangents (derivatives)

o
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Hermite splines

» Solve constraints to find coefficients

z(t) = at® + bt* + ct +d

2'(t) = 3at® + 2bt + ¢ d=zp

z(0)=x9=d e=2xp

)=z =a+b+c+d a = 2x¢ — 22y + x5 + )
Z0)=z5=c b= —3xg + 3z, — 225 — )

z'(1) .r'l 3a+2b+¢
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Hermite splines

* Matrix form is much simpler

— cofficients = rows
— basis functions = columns
* note p columns sumto [000 I]7
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Longer Hermite splines

* Can only do so much with one Hermite spline

* Can use these splines as segments of a longer curve
— curve from t = 0 to t = | defined by first segment
— curve from t = | to t = 2 defined by second segment

* To avoid discontinuity, match derivatives at junctions
— this produces a C' curve
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Hermite splines

* Hermite blending functions
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Hermite splines

* Hermite basis functions
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Hermite splines

* Hermite basis functions

Continuity

* Smoothness can be described by degree of continuity
~ zero-order (C°): position matches from both sides
— first-order (C'): tangent matches from both sides
~ second-order (C2): curvature matches from both sides

- Gvs. C"
zero order first order second order
3
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Continuity Geometric vs. parametric continuity

* Parametric continuity (C) of spline is continuity of
coordinate functions

* Geometric continuity (G) is continuity of the curve
itself

* Neither form of continuity is guaranteed by the other
— Can be C' but not G' when p(t) comes to a halt (next slide)

— Can be G' but not C' when the tangent vector changes
length abruptly
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20D spline

§ —b !

14 coordinate function v(1)

coordinate
function x(1)
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Geometric vs. parametric continuity

2D spline

v
0 { — |
14 coordinate function y(r)
I coordinate
function x(1)
0
N
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Control

* Local control
~ changing control point only affects a limited part of spline
— without this, splines are very difficult to use
- many likely formulations lack this
* natural spline
* polynomial fits
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Control

* Convex hull property
- convex hull = smallest convex region containing points
» think of a rubber band around some pins
— some splines stay inside convex hull of control points
* make clipping, culling, picking, etc. simpler

Ad ¥V
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Affine invariance

* Transforming the control points is the same as
transforming the curve
— true for all commonly used splines
— extremely convenient in practice...
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Matrix form of spline

p(t) =at® +bt® +ct +d

Po
P1
P2
P3

[ ¢ & 2]

X X X X
X X X X
KN K DR
X X X X

p(t) = bo(t)po + bi(t)p1 + b2(t)p2 + bs(t)ps
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Matrix form of spline Matrix form of spline

p(t) =8> +bt’* +ct+d p(t) =at® +bt* +ct +d

X X X X| [pPo X X X X Po

2 X X X X P:l N X X X Pl

[ta b l] X X x x| |p2 [ta et 1] X X X X| |p2

X X x x| ||pa X X X X| |ps3

p(t) = bo(t)po + b1(t)p1 + b2(t)p2 + bs(t)ps p(t) =Bal8)po + b1(t)p1 + ba2(t)p2 + bs(t)ps
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Hermite splines p Hermite basis '

» Constraints are endpoints
and endpoint tangents P,
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Hermite basis t

P i R T+ 1 k42
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Affine invariance

* Basis functions associated with points should always
sum to |

[ U
pﬂ/w
P, »

t 5

p(t) = bopo + bip1 + bavp + bavy

p'(t) = bo(po + u) + by(p1 + u) + bavy + bvy
= bopo + byp1 + bavy + byvy + (by + by )u
=p(t) +u
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Hermite to Bézier

* Mixture of points and vectors is awkward
* Specify tangents as differences of points
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Hermite to Bézier
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* Specify tangents as differences of points

Hermite to Bézier

» Mixture of points and vectors is awkward
* Specify tangents as differences of points

P

s R P2
l“ 4
- ‘I
P, P,
p| p‘
— note derivative is defined as 3 times offset
* reason is illustrated by linear case
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Hermite to Bézier Hermite to Bézier
< . < .
— t / 4 — t / 4
Po = 9o 0 Po = Qo 0
P1 =43 " Js P1 = q;3 " =
. P, . \ Py
vo = 3(q1 — qo) P, Vo = 3(d1 = o) 2
vi = 3(q3 — q2) vi = 3(q3 — q2)
Po 1 0 0 0 qo a 2 -2 | 1 1 0 0 0 o
pil [0 O O 1 qi bf |-3 3 -2 -1 0o 0 0 1 qi
vol |=3 3 0 0f |q2 cl |0 0 1 0 -3 3 0 0 2
A 0 0 -3 3| |qs d ] 0 0 0 0 0 -3 3| |aq3
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Hermite to Bézier

Bézier matrix

Po = 4o

. : 2 : . P1
vo = 3(q1 — qo) p(t) = [“ t= 1] -3 3 0 0f |p2
vi = 3(qs — q2) 1 0 0 0| |ps
a -1 3 -3 1 o
b 3 —6 3 0| |q - note that these are the Bernstein polynomials
el 7 [-3 3 0 ol |q
d 1 0 0| [qs C(nk) t& (1 —g)n—k

and that defines Bézier curves for any degree
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Bézier basis ", P, Convex hull
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* If basis functions are all positive, the spline has the
convex hull property
— we're still requiring them to sum to |

— if any basis function is ever negative, no convex hull prop.
* proof: take the other three points at the same place
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Chaining spline segments

* Hermite curves are convenient because they can be
made long easily

*» Bézier curves are convenient because their controls
are all points and they have nice properties
— and they interpolate every 4th point, which is a little odd

* We derived Bézier from Hermite by defining tangents
from control points

— a similar construction leads to the interpolating Catmull-Rom
spline
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Chaining Bézier splines

* No continuity built in
* Achieve C' using collinear control points
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Subdivision

* A Bézier spline segment can be split into a two-
segment curve:

— de Casteljau's algorithm
— also works for arbitrary t
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Cubic Bézier splines

* Very widely used type, especially in 2D
- e.g. itis a primitive in PostScript/PDF
« Can represent C' and/or G' curves with corners

Can easily add points at any position

lllustrator demo
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Hermite to Catmull-Rom

* Have not yet seen any interpolating splines

* Would like to define tangents automatically
— use adjacent control points

. L]
- end tangents: extra points or zero
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Hermite to Catmull-Rom

* Tangentsare (Py+ | —Px-1) /2

- scaling based on same argument about collinear case

a 2 =2

b
c 0 0
d
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Po = qk

P1=qi+ 1

vo = 0.5(qk+1 — gk-1)
vy = 0.5(qk+2 — qk)

0 0] |qr—
1 0 qr

D 0 Qk+1
0 5| |qre2
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Catmull-Rom basis

Catmull-Rom basis

0 —

0 | k=1 k k41 k+2
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Catmull-Rom splines B-splines

* Our first example of an interpolating spline

* Like Bézier, equivalent to Hermite
— in fact, all splines of this form are equivalent

* First example of a spline based on just a control point
sequence

* Does not have convex hull property
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* We may want more continuity than C'
* We may not need an interpolating spline

* B-splines are a clean, flexible way of making long
splines with arbitrary order of continuity

* Various ways to think of construction
— a simple one is convolution
— relationship to sampling and reconstruction
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Cubic B-spline basis

P P

Cornell C5465 Fall 2006 « Lecture | 1 © 2006 Steve Marschoer *

Cubic B-spline basis

0
k=1 k k+1 k+2
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Deriving the B-Spline

* Approached from a different tack than Hermite-style

constraints

— Want a cubic spline; therefore 4 active control points
~ Want C2 continuity

— Turns out that is enough to determine everything
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Efficient construction of any B-spline

* B-splines defined for all orders
- order d: degree d — |
- order d: d points contribute to value

* One definition: Cox-deBoor recurrence

{1 0<u<l
I)]:‘

0 otherwise

{ d—t

e a— Sty s
d_lbd 1(1)+d_] d-1(t —1)
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B-spline construction, alternate view

|
* Recurrence bi(t) ‘
0
- ramp up/down %
* Convolution ba(t) /\
o +

— smoothing of basis fn s

— smoothing of curve b(t) /" O\
0 . .
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Cubic B-spline matrix

-1 3 =83 17 Tpe=a

% 113 -6 3 0| | p
— IJ F= o "
pO)=[ & ¢t 1-21°5 o 3 ol |pes
Cornell C5465 Fall 2006 « Lecture | 1 © 2006 Steve Marschner *

Other types of B-splines

* Nonuniform B-splines
~ discontinuities not evenly spaced
- allows control over continuity or interpolation at certain
points
— e.g. interpolate endpoints (commonly used case)
* Nonuniform Rational B-splines (NURBS)
— ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)
— key properties:
* invariance under perspective as well as affine
» ability to represent conic sections exactly

Cornell C5465 Fall 2006 « Lecture | 1 © 2006 Steve Marschner *

Converting spline representations

* All the splines we have seen so far are equivalent
- all represented by geometry matrices

ps(t) =T(t)MgPs

* where S represents the type of spline

— therefore the control points may be transformed from one
type to another using matrix multiplication

Py = M;'MyP,

T(t)My(M; ' Mo Py)
= T(t)M2P> = p2(t)

pi(t)
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Evaluating splines for display

* Need to generate a list of line segments to draw
~ generate efficiently
— use as few as possible
— guarantee approximation accuracy
* Approaches
— reccursive subdivision (easy to do adaptively)
— uniform sampling (easy to do efficiently)

Cornell C5465 Fall 2006 « Lecture || © 2006 Seeve Marschoer «

Evaluating by subdivision

— Recursively split spline
* stop when polygon is
within epsilon of curve

— Termination criteria

* distance between control points

* distance of control points from line

P2

P P3
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Evaluating by subdivision

— Recursively split spline
* stop when polygon is
within epsilon of curve

— Termination criteria

* distance between control points

* distance of control points from line
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Evaluating with uniform spacing

* Forward differencing
~ efficiently generate points for uniformly spaced t values
— evaluate polynomials using repeated differences
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