3D Viewing, part Il

CS 465 Lecture 10

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschoer *

Viewing, backward and forward

* So far have used the backward approach to viewing
- start from pixel
- ask what part of scene projects to pixel
— explicitly construct the ray corresponding to the pixel

» Next will look at the forward approach
- start from a point in 3D
~ compute its projection into the image

* Central tool is matrix transformations

~ combines seamlessly with coordinate transformations used to position
camera and model

~ ultimate goal: single matrix operation to map any 3D point to its correct
screen location.

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschoer « |

Ray generation with matrices

* We didn't use transformations in eye ray generation, but can
we simplify things using them?

* Our ray generation process:
~ Step 0: build basis for image plane
— Step |: find (u.v) coordinates from pixel indices
~ Step 2: offset from the center of the image window to get q
— Step 3: build the ray as (p. q - p)

» Steps | and 2 can be done with affine transformations
— Step A: build a coordinate frame for the camera
~ Step B: make a 2D affine transformation to go from (i) to (u,v)
— Step C: make a 3D affine transform to find q in camera coordinates
— Step D: multiply it all together to get a transform that goes straight from
(iroq

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschoer « |

Ray generation with matrices

» Step A: build a coordinate frame for the camera
— Already did this, really

» Build ONB from image plane normal and up vector
~ Frame origin is the viewpoint
- Axes aligned with image

* No longer need to worry about camera pose
- rays all startat 0
— directions all on a plane

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschoer « ¢

Ray generation with matrices

* Step B: affine transformation from (i,j) to (u,v)

- slight change of (u.v) convention: let (u,v) be in [-I,1] x [-1,1]
* Simple to build:
— origin goes to center of lower left pixel, which is

(=1 + I/m, =1 + |/n) for an m by n image,
so that is the translation part

~ scale by 2/minxand 2/niny

2/m 0 1/m-1
M=]0 2/n 1/m-1
0 0 |

— I'll call this the ray generation viewport matrix
Cornell C5465 Fall 2006 * Lecture 6

© 2006 Steve Marschoer « !

Windowing transforms

Windowing transforms

» This transformation is worth generalizing: take one axis-aligned
rectangle or box to another

- a useful, if mundane, piece of a transformation chain

10 [o0 o1 o
— 4 window =
[]

il
01 dl|0 & offo 1 -b
0 0 1 0 0 1] [0 0 1
(aty
-'-—’ _jAaBe)
¥ / ’
Ko
co
CcDa ‘
uwnl o —————

[Shirley f. 6-16; egs. 6-6 and 7-5]
Cornell C5465 Fall 2006 * Lecture 6

© 2006 Steve Marschoer *

* This transformation is worth generalizing: take one axis-aligned
rectangle or box to another

- a useful, if mundane, piece of a transformation chain

1 0][5 0 0]J[1 0 -a
’ —f q window = (0 1 d| | 0 £=f o |0 1 -b
M:] 0 0 1JL 0 0 1o 0o 1
-"—’ JAaBo) -(A‘—,: 0 (,1,2'0
- 0 D-d dB - Db
. = - m —m—_
y / Y L0 0 1
Ko
co
CcDa ‘
—— ol N

Windowing transforms

» This transformation is worth generalizing: take one axis-aligned
rectangle or box to another

- a useful, if mundane, piece of a transformation chain

1 0][5 0 0]J[1 0 -a
| a8 g window = [0 1 d| | 0 £=f of|0o 1 -b
M:] 0 0 1J_L 0 0 1o 0o 1

———" JAaBo) rC-c 0 cA-Ca

A-a A-a

- 0 D-d dB-Db

: " - =t b5

y / Y L0 0 1
=

(co) D-d dA-D,
A=a 0 0 A-a "

‘) 0 E-¢ 0 eB-Eb

Farsiele T —— window3D = 0 16 5‘(-_1 [C“-—g‘r

] . - - =
0 0 0 1
[Shirley f. 6-16; egs. 6-6 and 7-5] [Shirley f. 6-16; egs. 6-6 and 7-5]

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschoer « Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschoer «

Windowing transforms

* Our viewport matrix is an instance of a windowing transform
source: [-1/2, m = 1/2] x [-1/2, n = 1/2] = [a, A] x [b, B]
destination: [~1, 1] x [~1, 1] = [¢, C] x [d. D]

C-c cA-Ca

A-a A-a
window = | 0 B=f dB=pe

0 0 1

a==l12,A=m-1I;b=-1I2,B=n~- 112
c=-I,C=L;d=-I,D=1

2/m 0 1/m -1
Mi=| 0 2/n 1/n-1
0 0 1

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschoer « |

Ray generation with matrices

* Step C: affine transform from (u,v) to q

» This is easy because the way we computed it before is directly
a matrix operation
~ note this matrix is 4x3 (maps 2D homog. to 3D homog.)

. he

v
wu/2 0 dd, -
(0 he/2 dd,
M, 4

0 0 dd,

0 0 1 IR UAY)
L p4dd

Cornell C5465 Fall 2006 * Lecture 6 © 2006 Steve Marschoer « |

Ray generation with matrices

* Step C: affine transform from (u,v) to q

» This is easy because the way we computed it before is directly
a matrix operation
~ note this matrix is 4x3 (maps 2D homog. to 3D homog.)

wu/2 0 dd,
(0 he/2 dd,
0 0 dd,
1] 0 1

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschoer * |

Ray generation with matrices

» Step D: put it all together

* To transform pixel (i,j) to the point q:
- multiply by M, to get (u,v)
— multiply by M, to get q, (q in camera frame)
- ray is (0, g, — 0); multiply by F to get into world coords

+ Subtracting the point 0 is the same as zeroing the w coord
- can do in transformation world by multiplying by

I 0 0 0
01 0 0
0 0 1 0
0 0 0 0

IT=

— could call this the “point-to-vector™ matrix

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschoer « !

Ray generation with matrices

* So, for pixel (i), start with x = [i j 1]7 and:
ray = (p, FJIIM M x) = (p, MraygenX)
— starts at p; direction is computed by multiplication with a single matrix

* That's all there is to ray generation!
- typical of transformation approach: all the work is in the setup
~ generating may rays this way is quite efficient (a few multiplications and
additions, with no conditionals)

* What we did here:
— worked in a convenient coordinate system (eye coordinates)
~ expressed several distinct steps as transformations
* kept parameters separate
* camera pose, camera intrinsics, image resolution don't interact directly
— concatenated transformations together

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner = I

Forward viewing

* Would like to just invert the ray generation process

* Two problems (really two symptoms of same problem)
— ray generation matrix is not invertible (it is 4 by 3)
— ray generation produces rays, not points in scene

* Inverting the ray tracing process requires division for the
perspective case

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner « |

Mathematics of projection

* Always work in eye coords
— assume eye point at 0 and plane perpendicular to z

* Orthographic case

— a simple projection:; just toss out z

» Perspective case: scale diminishes with z
- and increases with d

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner « I

Parallel projection: orthographic

projection
plane

', 0)

to implement orthographic, just toss out z:

' T 1 0 0 0 :
v|=|lyl=101 0 o |?
| 1 0 0 0 1 I

Cornell C5465 Fall 2006 * Lecture 6 © 2006 Steve Marschner « 1)

Parallel projection: oblique

projection (v.2)

to implement oblique, shear then toss out z:

z’ T+ az 1 0 a 0
v | =|y+bz| =10 1 b o |Y
| | 0 0 0 1 I

Cornell C5465 Fall 2006 * Lecture 6 © 2006 Steve Marschner « 14

View volume: orthographic

Cornell C5465 Fall 2006 * Lecture 6

© 2006 Steve Marschner « 1!

Choosing the view rectangle

* So far have just assumed we keep the x and y coords unchanged

* But they eventually have to get mapped into the image
— as with ray generation example, do this in two steps

— first: map desired view window to [-1, 1] x [-I, I]
(maps projected x and y coordinates to canonical coordinates)

— second: map canonical coordinates to pixel coordinates

* Window specification: top, left, bottom, right coords (t, |, b, r)
- so first transform is [I,r] x [b,t] to [-1.1] x [-1,1]

cA-Ca
. 1000 e 2.3

’t ' =) — dB-Db
M,=|0 3% 0 1 0 of window=|0 fB=f df=pt

0 0 1 0001 0 0 1

Iy

=
-

+

1
I-; =
1l

>

— this product is known as the projection matrix for an orthographic view

Cornell C5465 Fall 2006 * Lecture 6 © 2006 Steve Marschner « |(

Viewport matrix

* The second windowing step is to map the canonical

coordinates to pixel coordinates

* Another viewport transformation, going

from [-1,1] x [-1,1] to [-1/2, m — 1/2] x [-1/2, n — 1/2]

7

m=3

n

|

sz ©

M, =

——

* This matrix is known as the viewport matrix

Cornell C5465 Fall 2006 * Lecture 6

window =

C=¢
A~a 0

0 D-d

0 0

© 2006 Steve Marschner « I

Viewing and modeling matrices Viewing transformation

* We worked out all the preceding transforms starting from eye
coordinates
— before we do any of this stuff we need to transform into that space

* Transform from world (canonical) to eye space is traditionally
called the viewing matrix
— itis the canonical-to-frame matrix for the camera frame
- thatis, !

* Remember that geometry would originally have been in the
object’s local coordinates; transform into world coordinates is
called the modeling matrix, M,

* Note some systems (e.g. OpenGL) combine the two into a

modelview matrix and just skip world coordinates
the view matrix rewrites all coordinates in eye space

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner « I Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner « I
Orthographic transformation chain Perspective projection
» Start with coordinates in object’s local coordinates o
projection
* Transform into world coords (modeling transform, M,) plane o :
v R
* Transform into eye coords (camera canonical-to-frame, F_') . J e
(v, =) —
* Orthographic projection, M,) -
* Viewport transform, M,
S [objoet 5 .
Tpixel Yoboct similar triangles:
.U[nu-l - -‘,u [-J‘I:»I':~ ! A‘ ’m .:”‘I;..“ ,
i & ! y_ Y
: d -2
--rpi\«]- # (m = 1 ""_." 0 0 :_‘: - - ; 1 Lworld .
U = 10" &: £L]1'Fo~ 4. o <] 2P Yworld y = —dy/z
Ypixel 2 2 -t t—b O 0 0 1 Zerorld
| 1] 0 0 1 L0 0 0 1 1

Cornell C5465 Fall 2006 * Lecture 6 © 2006 Steve Marschner « 2 Cornell C5465 Fall 2006 * Lecture 6 © 2006 Steve Marschner » 2

Homogeneous coordinates revisited

* Perspective requires division
— that is not part of affine transformations
~ in affine, parallel lines stay parallel
* therefore not vanishing point
+ therefore no rays converging on viewpoint

* “True” purpose of homogeneous coords: projection

Cornell C5465 Fall 2006 * Lecture 6 © 2006 Steve Marschner * 20

Homogeneous coordinates revisited

* Introduced w = | coordinate as a placeholder

— used as a convenience for unifying translation with linear

* Can also allow arbitrary w
I wr
y wy
2 w2
1 w

Cornell C5465 Fall 2006 * Lecture 6 © 2006 Steve Marschner « 2!

Implications of w

x wx
L wi
vl [wy
2z wz
| w

All scalar multiples of a 4-vector are equivalent

When w is not zero, can divide by w
— therefore these points represent “normal” affine points

When w is zero, it's a point at infinity, a.k.a. a direction
— this is the point where parallel lines intersect
~ can also think of it as the vanishing point

* Digression on projective space

Cornell C5465 Fall 2006 * Lecture 6 © 2006 Steve Marschner * 2

Perspective projection

projection
plane

to implement perspective, just move z to w:

o —dz/z [dx d 0 0 0 2
y| = |-dy/z| ~|dy|l =10 d 0 0 f
! 1 -z] o 0 -1 of |]

Cornell C5465 Fall 2006 * Lecture 6 © 2006 Steve Marschner « 2!

View volume: perspective

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner = 2

Choosing the view rectangle

* We can use exactly the same windowing transform as in the

orthographic case to map the view window to the canonical
rectangle:

200 -2l o 0 0
2 =]
My=|0 2 -Z2flod 0 o0
1 oo -10
l

-

40 = 0
s 0 2d t+b 0

1 0

— note that this transform entirely ignores w

— this makes sense because scaling a point around the origin (i.e.
viewpoint, in eye space) doesn’t change its projection

» This is the projection matrix for perspective projection

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner * 2]

Clipping planes

* In object-order systems we always use at least two
clipping planes that further constrain the view volume

— near plane: parallel to view plane; things between it and the
viewpoint will not be rendered

~ far plane: also parallel; things behind it will not be rendered

* These planes are:

- partly to remove unnecessary stuff (e.g. behind the camera)
— but really to constrain the range of depths
(we'll see why later)

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner « 2

View volume: perspective (clipped)

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner * 2!

Preserving depth through projection

* In practice, when projecting we don't throw away z
— there is still a need to keep track of what is in front and what is behind

* Orthographic: projection simply preserves z, and windowing
treats z the same as x and y
— the near and far planes, at z = n and z = f, define the window extent
~ map [Ir] x [t.b] x [nf] to [~ 1] x [=1,1] x [~1,1]
[0 21 0 00

r—1

r—i{
old: M,=]0 & 22110100

0 0 1 0 0 0 1

2 0 0 2111 0 0 0
0 &% 0 -5 110 1. 0 0
0 0 Linl g 01 0
L 0 (0 1 0 0 0 1

new: M, =

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner « 3|

Preserving depth through projection

* Perspective: can no longer toss out w

* Arrange for projection matrix to preserve n and f

d 0 0 0 x

0 d 0 0|

2 00 a b

1 00 -1 0

- we're stuck with the w row, but choose a and b to ensure that z' = n
whenz=nandz'=fwhenz=f

Yy

=

el ™

e M

:
-

H2)=az+0b

want 2'(n) =n and 2'(f) = f

result: a = —(n + f) and b= nf (try it)

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner * 3

Preserving depth through projection

* So perspective transform (with windowing) is

I‘
p o

r_2 r4l 24
= 0 -] [d 0 0 0 —=
A 0 2 -&£110d 0 0 0 25

0 0 | 0 0 -1 0 0 0

= &
~

|.

old: M

-~
~

—

2 0 0 -=77r1d 0 0 0

0 =2 (22010 d 0 0

i M =% =)

new L, el o 0 (n+ f) nf
1

0 0 1 0 0

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner « 3|

Clip coordinates

* Projection matrix maps from eye space to clip space

* In this space, the two-unit cube [-1, I]3 contains exactly what
needs to be drawn

* It's called “clip” coordinates because everything outside of this
box is clipped out of the view
— this can be done at this point, geometrically
~ or it can be done implicitly later on by careful rasterization

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner « 3

OpenGL view frustum: orthographic

(Xpyo 1)
Tz= _'
z=-n
(X1, Yo —n) a i))

» e

Note OpenGL puts the near and far planes at —n and —f
so that the user can give positive numbers

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner * 3

OpenGL view frustum: perspective

(Xn ye~n)

Jz=-f
Jlz==-n

- (X, yp.—n)
0

Note OpenGL puts the near and far planes at —n and —f
so that the user can give positive numbers

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner « 3!

Vertex processing: spaces

* Standard sequence of transforms

Cornell C5465 Fall 2006 + Lecture 6 © 2006 Steve Marschner * 3(

