
© 2006 Steve Marschner • 1Cornell CS465 Fall 2006 •!Lecture 6

3D Transformations

CS 465 Lecture 9

© 2006 Steve Marschner • 2Cornell CS465 Fall 2006 •!Lecture 6

Translation

© 2006 Steve Marschner • 3Cornell CS465 Fall 2006 •!Lecture 6

Scaling

© 2006 Steve Marschner • 4Cornell CS465 Fall 2006 •!Lecture 6

Rotation about z axis

© 2006 Steve Marschner • 5Cornell CS465 Fall 2006 •!Lecture 6

Rotation about x axis

© 2006 Steve Marschner • 6Cornell CS465 Fall 2006 •!Lecture 6

Rotation about y axis

© 2006 Steve Marschner • 7Cornell CS465 Fall 2006 •!Lecture 6

General rotations

• A rotation in 2D is around a point

• A rotation in 3D is around an axis
– so 3D rotation is w.r.t a line, not just a point

– there are many more 3D rotations than 2D

• a 3D space around a given point, not just 1D

2D 3D

© 2006 Steve Marschner • 8Cornell CS465 Fall 2006 •!Lecture 6

Specifying rotations

• In 2D, a rotation just has an angle
– if it’s about a particular center, it’s a point and angle

• In 3D, specifying a rotation is more complex
– basic rotation about origin: unit vector (axis) and angle

• convention: positive rotation is CCW when vector is pointing at you

– about different center: point (center), unit vector, and angle
• this is redundant: think of a second point on the same axis...

• Alternative: Euler angles
– stack up three coord axis rotations

© 2006 Steve Marschner • 9Cornell CS465 Fall 2006 •!Lecture 6

Coming up with the matrix

• Showed matrices for coordinate axis rotations
– but what if we want rotation about some random axis?

• Compute by composing elementary transforms
– transform rotation axis to align with x axis

– apply rotation

– inverse transform back into position

• Just as in 2D this can be interpreted as a similarity transform

© 2006 Steve Marschner • 10Cornell CS465 Fall 2006 •!Lecture 6

Building general rotations

• Using elementary transforms you need three
– translate axis to pass through origin

– rotate about y to get into x-y plane

– rotate about z to align with x axis

• Alternative: construct frame and change coordinates
– choose p, u, v, w to be orthonormal frame with p and u matching the

rotation axis

– apply similarity transform T = F Rx(!) F–1

© 2006 Steve Marschner • 11Cornell CS465 Fall 2006 •!Lecture 6

Orthonormal frames in 3D

• Useful tools for constructing transformations

• Recall rigid motions
– affine transforms with pure rotation

– columns (and rows) form right handed ONB
• that is, an orthonormal basis

© 2006 Steve Marschner • 12Cornell CS465 Fall 2006 •!Lecture 6

Building 3D frames

• Given a vector a and a secondary vector b
– The u axis should be parallel to a; the u–v plane should contain b

• u = u / ||u||

• w = u x b; w = w / ||w||

• v = w x u

• Given just a vector a
– The u axis should be parallel to a; don’t care about orientation about

that axis
• Same process but choose arbitrary b first

• Good choice is not near a: e.g. set smallest entry to 1

© 2006 Steve Marschner • 13Cornell CS465 Fall 2006 •!Lecture 6

Building general rotations

• Alternative: construct frame and change coordinates
– choose p, u, v, w to be orthonormal frame with p and u matching the

rotation axis

– apply similarity transform T = F Rx(!) F–1

– interpretation: move to x axis, rotate, move back

– interpretation: rewrite u-axis rotation in new coordinates

– (each is equally valid)

© 2006 Steve Marschner • 14Cornell CS465 Fall 2006 •!Lecture 6

Transforming normal vectors

• Transforming surface normals
– differences of points (and therefore tangents) transform OK

– normals do not

