Scene Graphs

CS 465 Lecture 8

Cornell C5465 Fall 2006 * Lecture 8 © 2006 Steve Marschner » |

Data structures with transforms

* Representing a drawing (“scene”
* List of objects

* Transform for each object
— can use minimal primitives: ellipse is transformed circle
- transform applies to points of object

Cornell C5465 Fall 2006 * Lecture 8 © 2006 Steve Marschner * 2

Example

* Can represent drawing with flat list

- but editing operations require updating many transforms

Eupv Ry R¥-EE-EX-ENORY BN [DE-LE LF B[R ER-DN IF R

© 2006 Steve Marschner * 3

Cornell C5465 Fall 2006 * Lecture 8

Example

* Can represent drawing with flat list

- but editing operations require updating many transforms

Sapey T ECR T T TRCR IR IR IRCRE TN R

Cornell CS465 Fall 2006 « Lecture 8 © 2006 Steve Marschner * 3

Groups of objects

* Treat a set of objects as one

* Introduce new object type: group
— contains list of references to member objects
* This makes the model into a tree

— interior nodes = groups
— leaf nodes = objects
— edges = membership of object in group

Cornell C5465 Fall 2006 * Lecture 8 © 2006 Steve Marschner * 4

Example

* Add group as a new object type
- lets the data structure reflect the drawing structure

— enables high-level editing by changing just one node

T .D v_.. Tas » e @
pe- - - e ‘
O il el | olm
I" .r;.‘x..l I '.'1‘. Y:'..l . . .
il =g

Cornell C5465 Fall 2006 * Lecture 8 © 2006 Steve Marschner * 5

Example

* Add group as a new object type

- lets the data structure reflect the drawing structure
— enables high-level editing by changing just one node

1\.{ r... Tee w Tew Toe

Cornell C5465 Fall 2006 * Lecture 8 © 2006 Steve Marschner * 5

The Scene Graph (tree)

* A name given to various kinds of graph structures
(nodes connected together) used to represent scenes

* Simplest form: tree
— just saw this s
- every node has one parent /] ‘ \ A
— leaf nodes are identified A
with objects in the scene g

Cornell CS465 Fall 2006 « Lecture 8 © 2006 Steve Marschner * 6

Concatenation and hierarchy

* Transforms associated with nodes or edges

* Each transform applies to all geometry below it
— want group transform to transform each member
-~ members already transformed—concatenate

* Frame transform for object is product of all matrices
along path from root
- each object’s transform describes relationship between its
local coordinates and its group's coordinates

- frame-to-canonical transform is the result of repeatedly
changing coordinates from group to containing group

Cornell C5465 Fall 2006 * Lecture 8 © 2006 Steve Marschner » 7

Instances

* Simple idea: allow an object to be a member of more
than one group at once
- transform different in each case
— leads to linked copies
— single editing operation changes all instances

Cornell CS465 Fall 2006 « Lecture 8 © 2006 Steve Marschner * 8

Example

* Allow multiple references to nodes
- reflects more of drawing structure
— allows editing of repeated parts in one operation

T .D v_.. Tas] e i Tew Toew
[v.-. v,.. v.' 1,..]
w0 il Al

ol -l
il

Tew

B N
HEE

© 2006 Steve Marschner * 9

Cornell C5465 Fall 2006 * Lecture 8

Example

* Allow multiple references to nodes
- reflects more of drawing structure
— allows editing of repeated parts in one operation

1‘.: r... Tas w Tee w Tew few few
lw. it — ".] ‘
~
w0 il
l' . "’.. ; ".I . . .

r,,.. iy

Cornell C5465 Fall 2006 * Lecture 8 © 2006 Steve Marschner * 9

Example
* Allow multiple references to nodes

— reflects more of drawing structure
— allows editing of repeated parts in one operation

© 2006 Steve Marschner = 9

V..: . s Tee few few

Iy

b
nefll -l

K I'\-l '
ToR: EE B

Cornell CS465 Fall 2006 « Lecture 8

The Scene Graph (with instances)

* With instances, there is no more tree

- an object that is instanced multiple
times has more than one parent

* Transform tree becomes DAG
— directed acyclic graph -
— group is not allowed to contain "
itself, even indirectly NV
Transforms still accumulate
along path from root

— now paths from root to leaves
are identified with scene objects

Cornell CS465 Fall 2006 « Lecture 8 © 2006 Steve Marschner » 10

Implementing a hierarchy

Object-oriented language is convenient
— define shapes and groups as derived from single class

abstract class Shape {
void draw();

class Square extends Shape {
void draw() {
// draw unit square
}
}

class Circle extends Shape {
void draw() {
// draw unit circle
}
}

Cornell CS465 Fall 2006 « Lecture 8 © 2006 Steve Marschner » 11

Implementing traversal

Pass a transform down the hierarchy
~ before drawing, concatenate

abstract class Shape {
void draw(Transform t_c);

}

class Square extends Shape {
void draw(Transform t_c) {
// draw t_c * unit square
}
}

class Circle extends Shape {
void draw(Transform t_c) {
// draw t_c * unit circle
}
}

Cornell CS465 Fall 2006 « Lecture 8 © 2006 Steve Marschner » 12

Implementing traversal Basic Scene Graph operations

* Pass a transform down the hierarchy Editing a transformation

— before drawing, concatenate — good to present usable Ul
e e Bk * Getting transform of object in canonical (world) frame
: void draw(Transform t_c); — traverse path from root to leaf
class Group extends Shape { . GF'OU in and ungroupin
class Square extends Shape { Tra“SfO_U“ G ping § : P g . 2
void draw(Transform t_c) { ShapeList members; - can do these operations without moving anything
// draw t_c * unit square void draw(Transform t_c) { g identi d
} for (m in members) { — group: Insert igentity node
} m.draw(t_c * 1); — ungroup: remove node, push transform to children
class Circle extends Shape { } ® Reparenting
void draw(Transform t_c) { }
// draw t_c * unit circle — move node from one parent to another
; } — can do without altering position
Cornell CS465 Fall 2006 « Lecture 8 © 2006 Steve Marschner » 12 Cornell CS465 Fall 2006 « Lecture 8 © 2006 Steve Marschner » 13
Adding more than geometry Scene Graph variations
* Objects have properties besides shape * Where transforms go
— color, shading parameters — in every node
— approximation parameters (e.g. precision of subdividing — on edges

— behavior in response to user input in special Transform nodes

e * Tree vs. DAG

* Setting properties for entire groups is useful + Nodes for cameras and lights?
— paint entire window green

* Many systems include some kind of property nodes

— in traversal they are read as, e.g., “set current color”

Cornell CS465 Fall 2006 « Lecture 8 © 2006 Steve Marschner * 14 Cornell CS465 Fall 2006 « Lecture 8 © 2006 Steve Marschner » 15

