2D Geometric Transformations

CS 465 Lecture 7

Implicit representations

- Equation to tell whether we are on the curve
 \[\{ v \mid f(v) = 0 \} \]
- Example: line (orthogonal to \(u \), distance \(k \) from \(0 \))
 \[\{ v \mid v \cdot u + k = 0 \} \]
- Example: circle (center \(p \), radius \(r \))
 \[\{ v \mid (v - p) \cdot (v - p) + r^2 = 0 \} \]
- Always define boundary of region
 - (if \(f \) is continuous)

Explicit representations

- Also called parametric
- Equation to map domain into plane
 \[\{ f(t) \mid t \in D \} \]
- Example: line (containing \(p \), parallel to \(u \))
 \[\{ p + tu \mid t \in \mathbb{R} \} \]
- Example: circle (center \(b \), radius \(r \))
 \[\{ p + r[\cos t \sin t]^T \mid t \in [0, 2\pi) \} \]
- Like tracing out the path of a particle over time
- Variable \(t \) is the “parameter”

A little quick math background

- Notation for sets, functions, mappings
- Linear transformations
- Matrices
 - Matrix-vector multiplication
 - Matrix-matrix multiplication
- Geometry of curves in 2D
 - Implicit representation
 - Explicit representation
Transforming geometry

- Move a subset of the plane using a mapping from the plane to itself
 \[S \to \{ T(v) \mid v \in S \} \]
- Parametric representation:
 \[\{ f(t) \mid t \in D \} \to \{ T(f(t)) \mid t \in D \} \]
- Implicit representation:
 \[\{ v \mid f(v) = 0 \} \to \{ T(v) \mid f(v) = 0 \} \]
 \[= \{ v \mid f(T^{-1}(v)) = 0 \} \]

Translation

- Simplest transformation: \(T(v) = v + u \)
- Inverse: \(T^{-1}(v) = v - u \)
- Example of transforming circle

Linear transformations

- One way to define a transformation is by matrix multiplication:
 \[T(v) = Mv \]
- Such transformations are linear, which is to say:
 \[T(au + v) = aT(u) + T(v) \]
 (and in fact all linear transformations can be written this way)

Geometry of 2D linear trans.

- 2x2 matrices have simple geometric interpretations
 - uniform scale
 - non-uniform scale
 - rotation
 - shear
 - reflection
- Reading off the matrix
Linear transformation gallery

- **Uniform scale**
 \[
 \begin{bmatrix}
 s & 0 \\
 0 & s
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 =
 \begin{bmatrix}
 s \cdot x \\
 s \cdot y
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 1.5 & 0 \\
 0 & 1.5
 \end{bmatrix}
 \]

- **Nonuniform scale**
 \[
 \begin{bmatrix}
 s_x & 0 \\
 0 & s_y
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 =
 \begin{bmatrix}
 s_x \cdot x \\
 s_y \cdot y
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 1.5 & 0 \\
 0 & 0.8
 \end{bmatrix}
 \]

Linear transformation gallery

- **Rotation**
 \[
 \begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 =
 \begin{bmatrix}
 x \cos \theta - y \sin \theta \\
 x \sin \theta + y \cos \theta
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 0.866 & -0.05 \\
 0.5 & 0.866
 \end{bmatrix}
 \]

- **Reflection**
 - can consider it a special case of nonuniform scale
 \[
 \begin{bmatrix}
 -1 & 0 \\
 0 & 1
 \end{bmatrix}
 \]
Linear transformation gallery

- Shear

\[
\begin{bmatrix}
1 & a \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
x + ay \\
y
\end{bmatrix}
\]

Composing transformations

- Want to move an object, then move it some more
 - \(p \rightarrow T(p) \rightarrow S(T(p)) = (S \circ T)(p) \)
- We need to represent \(S \circ T \) ("S compose T")
 - and would like to use the same representation as for \(S \) and \(T \)
- Translation easy
 - \(T(p) = p + u_T; S(p) = p + u_S \)
 - \((S \circ T)(p) = p + (u_T + u_S) \)
- Translation by \(u_T \) then by \(u_S \) is translation by \(u_T + u_S \)
 - commutative!

Composing transformations

- Linear transformations also straightforward
 - \(T(p) = M_Tp; S(p) = M_Sp \)
 - \((S \circ T)(p) = M_SM_Tp \)
- Transforming first by \(M_T \) then by \(M_S \) is the same as transforming by \(M_SM_T \)
 - only sometimes commutative
 - e.g. rotations & uniform scales
 - e.g. non-uniform scales w/o rotation
 - Note \(M_SM_T \), or \(S \circ T \), is \(T \) first, then \(S \)

Combining linear with translation

- Need to use both in single framework
- Can represent arbitrary seq. as \(T(p) = Mp + u \)
 - \(T(p) = M_Tp + u_T \)
 - \(S(p) = M_Sp + u_S \)
 - \((S \circ T)(p) = M_SM_Tp + u_T + u_S \)
 - e.g. \(S(T(0)) = S(u_T) \)
- Transforming by \(M_T \) and \(u_T \), then by \(M_S \) and \(u_S \), is the same as transforming by \(M_SM_T \) and \(u_T + M_Su_T \)
 - This will work but is a little awkward
Homogeneous coordinates

- A trick for representing the foregoing more elegantly
- Extra component \(w \) for vectors, extra row/column for matrices
 - for affine, can always keep \(w = 1 \)
- Represent linear transformations with dummy extra row and column

\[
\begin{bmatrix}
 a & b & 0 \\
 c & d & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix} =
\begin{bmatrix}
 ax + by \\
 cx + dy \\
 1
\end{bmatrix}
\]

Affine transformations

- The set of transformations we have been looking at is known as the “affine” transformations
 - straight lines preserved; parallel lines preserved
 - ratios of lengths along lines preserved (midpoints preserved)

\[\begin{bmatrix}
 1 & 0 & t \\
 0 & 1 & s \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix} =
\begin{bmatrix}
 x + t \\
 y + s \\
 1
\end{bmatrix}\]
Affine transformation gallery

- **Translation**
 \[
 \begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 2.15 \\
 0 & 1 & 0.85 \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \]

 ![Translation Example](image1)

- **Uniform scale**
 \[
 \begin{bmatrix}
 s & 0 & 0 \\
 0 & s & 0 \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \begin{bmatrix}
 1.5 & 0 & 0 \\
 0 & 1.5 & 0 \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \]

 ![Uniform Scale Example](image2)

- **Nonuniform scale**
 \[
 \begin{bmatrix}
 s_x & 0 & 0 \\
 0 & s_y & 0 \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \begin{bmatrix}
 1.5 & 0 & 0 \\
 0 & 0.8 & 0 \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \]

 ![Nonuniform Scale Example](image3)

- **Rotation**
 \[
 \begin{bmatrix}
 \cos \theta & -\sin \theta & 0 \\
 \sin \theta & \cos \theta & 0 \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \begin{bmatrix}
 0.866 & -0.5 & 0 \\
 0.5 & 0.866 & 0 \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \]

 ![Rotation Example](image4)
Affine transformation gallery

- Reflection
 - can consider it a special case of nonuniform scale
 \[
 \begin{bmatrix}
 -1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \]

General affine transformations

- The previous slides showed “canonical” examples of the types of affine transformations
- Generally, transformations contain elements of multiple types
 - often define them as products of canonical transforms
 - sometimes work with their properties more directly

Composite affine transformations

- In general **not** commutative: order matters!

rotate, then translate
translate, then rotate
Composite affine transformations

- Another example

scale, then rotate
rotate, then scale

More math background

- Linear independence and bases
- Orthonormal matrices
- Coordinate systems
 - Expressing vectors with respect to bases
 - Linear transformations as changes of basis

Rigid motions

- A transform made up of only translation and rotation is a **rigid motion** or a **rigid body transformation**
- The linear part is an orthonormal matrix

\[
R = \begin{bmatrix} Q & u \\ 0 & 1 \end{bmatrix}
\]

- Inverse of orthonormal matrix is transpose
 - so inverse of rigid motion is easy:

\[
R^{-1}R = \begin{bmatrix} Q^T & -Q^T u \\ 0 & 1 \end{bmatrix} \begin{bmatrix} Q & u \\ 0 & 1 \end{bmatrix}
\]

Composing to change axes

- Want to rotate about a particular point
 - could work out formulas directly…
- Know how to rotate about the origin
 - so translate that point to the origin

\[
M = T^{-1}RT
\]
Composing to change axes

- Want to scale along a particular axis and point
- Know how to scale along the y axis at the origin
 - so translate to the origin and rotate to align axes

\[M = T^{-1} R^{-1} S R T \]

Transforming points and vectors

- Recall distinction points vs. vectors
 - vectors are just offsets (differences between points)
 - points have a location
 - represented by vector offset from a fixed origin
- Points and vectors transform differently
 - points respond to translation; vectors do not
 \[\mathbf{v} = \mathbf{p} - \mathbf{q} \]
 \[T(\mathbf{x}) = M \mathbf{x} + \mathbf{t} \]
 \[T(\mathbf{p} - \mathbf{q}) = M \mathbf{p} + \mathbf{t} - (M \mathbf{q} + \mathbf{t}) = M(\mathbf{p} - \mathbf{q}) + (t - t) = M \mathbf{v} \]

Affine change of coordinates

- Six degrees of freedom

\[
\begin{bmatrix}
 a_1 & a_2 & a_3 \\
 a_4 & a_5 & a_6 \\
 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 \mathbf{u} \\
 \mathbf{v} \\
 \mathbf{p} \\
\end{bmatrix}
=
\begin{bmatrix}
 \mathbf{e}_2 \\
 \mathbf{e}_1 \\
 0 \\
\end{bmatrix}
\]

- Preview: projective transformations
 - what’s really going on with this last coordinate?
 - think of \mathbb{R}^2 embedded in \mathbb{R}^3: all affine xfs. preserve $z=1$ plane
 - could have other transforms; project back to $z=1$
Affine change of coordinates

- Coordinate frame: point plus basis
- Interpretation: transformation changes representation of point from one basis to another
- “Frame to canonical” matrix has frame in columns
 - takes points represented in frame
 - represents them in canonical basis
 - e.g. [0 0], [1 0], [0 1]
- Seems backward but bears thinking about

Affine change of coordinates

- A new way to “read off” the matrix
 - e.g. shear from earlier
 - can look at picture, see effect on basis vectors, write down matrix
- Also an easy way to construct transform.
 - e.g. scale by 2 across direction (1,2)

Affine change of coordinates

- When we move an object to the origin to apply a transformation, we are really changing coordinates
 - the transformation is easy to express in object’s frame
 - so define it there and transform it

\[
T_e = F T_F F^{-1}
\]

- \(T_e\) is the transformation expressed wrt. \(\{e_1, e_2\}\)
- \(T_F\) is the transformation expressed in natural frame
- \(F\) is the frame-to-canonical matrix \([u \ v \ p]\)
- This is a similarity transformation

Coordinate frame summary

- Frame = point plus basis
- Frame matrix (frame-to-canonical) is

\[
F = \begin{bmatrix} u & v & p \\ 0 & 0 & 1 \end{bmatrix}
\]

- Move points to and from frame by multiplying with \(F\)

\[
p_e = F p_F \quad p_F = F^{-1} p_e
\]

- Move transformations using similarity transforms

\[
T_e = F T_F F^{-1} \quad T_F = F^{-1} T_e F
\]