3D Viewing

CS 465 Lecture 4

Cornell CS465 Fall 2006 • Lecture 4

History of projection

- · Ancient times: Greeks wrote about laws of perspective
- · Renaissance: perspective is adopted by artists

Duccio c. 1308

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 2

History of projection

· Later Renaissance: perspective formalized precisely

da Vinci c. 1498

Plane projection in drawing

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 4

Plane projection in drawing

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 5

Plane projection in photography

- · This is another model for what we are doing
 - applies more directly in realistic rendering

Plane projection in photography

Richard Zakia]

Ray generation vs. projection

- Viewing in ray tracing
 - start with image point
 - compute ray that projects to that point
 - do this using geometry
- · Viewing by projection
 - start with 3D point
 - compute image point that it projects to
 - do this using transforms
- Inverse processes
 - ray gen. computes the preimage of projection

Cornell CS465 Fall 2006 • Lecture 4 © 2006 Steve Marschner • 7

Cornell CS465 Fall 2006 • Lecture 4

Classical projections

- · Emphasis on cube-like objects
 - traditional in mechanical and architectural drawing

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 9

Parallel projection

- · Viewing rays are parallel rather than diverging
 - like a perspective camera that's far away

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 10

Multiview orthographic

FIGURE 2-1. Multiview orthographic projection: plan, elevations, and section of a building

© 2006 Steve Marschner • 11

Multiview orthographic

- projection plane parallel to a coordinate plane
- projection direction perpendicular to projection plane

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 12

Cornell CS465 Fall 2006 • Lecture 4

Off-axis parallel

axonometric: projection plane perpendicular to projection direction but not parallel to coordinate planes

oblique: projection plane parallel to a coordinate plane but not perpendicular to projection direction.

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 13

"Orthographic" projection

- In graphics usually we lump axonometric with orthographic
 - projection plane perpendicular to projection direction
 - image height determines size of objects in image

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 14

"Orthographic" projection

- In graphics usually we lump axonometric with orthographic
 - projection plane perpendicular to projection direction
 - image height determines size of objects in image

"Orthographic" projection

- In graphics usually we lump axonometric with orthographic
 - projection plane perpendicular to projection direction
 - image height determines size of objects in image

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 14

Cornell CS465 Fall 2006 • Lecture 4

"Orthographic" projection

- In graphics usually we lump axonometric with orthographic
 - projection plane perpendicular to projection direction
 - image height determines size of objects in image

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 14

View volume: orthographic

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 15

Oblique projection

- View direction no longer coincides with projection plane normal (one more parameter)
 - objects at different distances still same size
 - objects are shifted in the image depending on their depth

Oblique projection

- View direction no longer coincides with projection plane normal (one more parameter)
 - objects at different distances still same size
 - objects are shifted in the image depending on their depth

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 16

Cornell CS465 Fall 2006 • Lecture 4

Oblique projection

- View direction no longer coincides with projection plane normal (one more parameter)
 - objects at different distances still same size
 - objects are shifted in the image depending on their depth

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 16

Oblique projection

- View direction no longer coincides with projection plane normal (one more parameter)
 - objects at different distances still same size
 - objects are shifted in the image depending on their depth

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 16

Perspective

one-point:

projection plane parallel to a coordinate plane (to two coordinate axes)

two-point:

axis

projection plane
parallel to one
coordinate axis
three-point:
projection plane not
parallel to a coordinate

Perspective projection (normal)

- Perspective is projection by lines through a point;
 "normal" = plane perpendicular to view direction
 - magnification determined by:
 - image height
 - object depth
 - image plane distance
 - f.o.v. $\alpha = 2 \operatorname{atan}(h/(2d))^{\text{viewpoint}}$
 - -y'=dy/z
 - "normal" case corresponds to common types of cameras

projection plane

Connell CS465 Fall 2006 • Lecture 4 © 2006 Steve Marschner • 17

Cornell CS465 Fall 2006 • Lecture 4

Perspective projection (normal)

- Perspective is projection by lines through a point;
 "normal" = plane perpendicular to view direction
 - magnification determined by:
 - image height
 - object depth
 - image plane distance
 - f.o.v. α = 2 atan(h/(2d))
 - -y'=dy/z
 - "normal" case corresponds to common types of cameras

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 18

Perspective projection (normal)

- Perspective is projection by lines through a point;
 "normal" = plane perpendicular to view direction
 - magnification determined by:
 - image height
 - object depth
 - image plane distance
 - f.o.v. α = 2 atan(h/(2d))
 - -y'=dy/z
 - "normal" case corresponds to common types of cameras

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 18

Perspective projection (normal)

- Perspective is projection by lines through a point;
 "normal" = plane perpendicular to view direction
 - magnification determined by:
 - image height
 - object depth
 - image plane distance
 - f.o.v. $\alpha = 2 \operatorname{atan}(h/(2d))$
 - -y'=dy/z
 - "normal" case corresponds to common types of cameras

© 2006 Steve Marschner • 18

View volume: perspective

Cornell CS465 Fall 2006 • Lecture 4

Field of view (or f.o.v.)

- The angle between the rays corresponding to opposite edges of a perspective image
 - easy to compute only for "normal" perspective
 - have to decide to measure vert., horiz., or diag.
- · In cameras, determined by focal length
 - confusing because of many image sizes
 - for 35mm format (36mm by 24mm image)
 - 18mm = 67° v.f.o.v. super-wide angle
 - 28mm = 46° v.f.o.v. wide angle
 - 50mm = 27° v.f.o.v. "normal"
 - 100mm = 14° v.f.o.v. narrow angle ("telephoto")

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 20

Field of view

· Determines "strength" of perspective effects

close viewpoint wide angle prominent foreshortening

far viewpoint narrow angle little foreshortening

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 21

Choice of field of view

- · In photography, wide angle lenses are specialty tools
 - "hard to work with"
 - easy to create weird-looking perspective effects
- In graphics, you can type in whatever f.o.v. you want
 - and people often type in big numbers!

© 2006 Steve Marschner • 22

Perspective distortions

Lengths, length ratios

Carlbom & Paciorek

Cornell CS465 Fall 2006 • Lecture 4

Shifted perspective projection

- Perspective but with projection plane not perpendicular to view direction
 - additional parameter:
 projection plane normal
 - exactly equivalent to cropping out an off-center rectangle from a larger viewpoint in "normal" perspective
 - corresponds to view cameramal in photography

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 24

Shifted perspective projection

- Perspective but with projection plane not perpendicular to view direction
 - additional parameter:
 projection plane normal
 - exactly equivalent to cropping out an off-center rectangle from a larger "normal" perspective
 - corresponds to view camera in photography

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 24

Shifted perspective projection

- Perspective but with projection plane not perpendicular to view direction
 - additional parameter:projection plane normal
 - exactly equivalent to cropping out an off-center rectangle from a larger "normal" perspective
 - corresponds to view camera in photography

Shifted perspective projection

- Perspective but with projection plane not perpendicular to view direction
 - additional parameter:
 projection plane normal
 - exactly equivalent to cropping out an off-center rectangle from a larger "normal" perspective
 - corresponds to view camera in photography

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 24

Cornell CS465 Fall 2006 • Lecture 4

Why shifted perspective?

- · Control convergence of parallel lines
- · Standard example: architecture
 - buildings are taller than you, so you look up
 - top of building is farther away, so it looks smaller
- · Solution: make projection plane parallel to facade
 - top of building is the same distance from the projection plane
- Same perspective effects can be achieved using postprocessing
 - (though not the focus effects)
 - choice of which rays vs. arrangement of rays in image

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 25

Specifying perspective projections

- · Many ways to do this
 - common: from, at, up, v.f.o.v. (but not for shifted)
- · One way (used in ray tracer):
 - viewpoint, view direction, up
 - · establishes location and orientation of viewer
 - · view direction is the direction of the center ray
 - image width, image height, projection distance
 - · establishes size and location of image rectangle
 - image plane normal
 - can be different from view direction to get shifted perspective

Cornell CS465 Fall 2006 • Lecture 4

Generating eye rays

· Just need to compute the view plane point q:

- but where exactly is the view rectangle?

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 29

Generating eye rays

- Positioning the view rectangle
 - lots of ways to do this; here is one
 - center is d units away along the view direction d
 - size is w by h (more on w and h in a moment)
 - orientation?
 - establish three vectors to be camera basis: u, v, w
 - build the basis from img.
 plane normal and up vector

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 30

Generating eye rays

- Positioning the view rectangle
 - lots of ways to do this; here is one
 - center is d units away along the view direction d
 - size is w by h (more on w and h in a moment)
 - orientation?
 - establish three vectors to be camera basis: u, v, w
 - build the basis from img.
 plane normal and up
 vector

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 30

Generating rays in camera basis

· Compute image plane points using u, v, w

Cornell CS465 Fall 2006 • Lecture 4

Generating rays in camera basis

· Compute image plane points using u, v, w

$$\mathbf{p} + d\mathbf{d} + (u - \frac{1}{2})w \mathbf{u} + (v - \frac{1}{2})h \mathbf{v}$$

Cornell CS465 Fall 2006 • Lecture 4

© 2006 Steve Marschner • 31

Generating rays in camera basis

· Compute image plane points using u, v, w

$$\mathbf{p} + d\mathbf{d} + (u - \frac{1}{2})w \mathbf{u} + (v - \frac{1}{2})h \mathbf{v}$$

Cornell CS465 Fall 2006 • Lecture 4