CS465: Computer Graphics I
Professor: Steve Marschner

Introduction

Computer graphics: The study of creating, manipulating, and using visual images in the computer.

Problems in graphics

- 2D imaging
 - compositing and layering
 - digital filtering
 - color transformations
- 2D drawing
 - illustration, drafting
 - text, GUls
Problems in graphics cont’d

• 3D modeling
 – representing 3D shapes
 – polygons, curved surfaces, ...
 – procedural modeling

Problems in graphics cont’d

• 3D rendering
 – 2D views of 3D geometry
 – projection and perspective
 – removing hidden surfaces
 – lighting simulation
Problems in graphics cont’d

- User Interaction
 - 2D graphical user interfaces
 - 3D modeling interfaces
 - virtual reality

Problems in graphics cont’d

- Animation
 - keyframe animation
 - physical simulation

Problems in graphics cont’d

- Animation
 - keyframe animation
 - physical simulation

Computer graphics:
Mathematics made visible.
Graphics Applications

- Entertainment
 - film production
 - film effects
 - games
- Science and engineering
 - computer-aided design
 - scientific visualization
- Training & Simulation
- Graphic Arts
- Fine Art

Pixar—Ratatouille (2007)

WETA Digital—King Kong (Universal Pictures, 2005)

id Software—Quake 4 (screenshot: Planet Quake)
Graphics Applications

- Entertainment
 - film production
 - film effects
 - games
- Science and engineering
 - computer-aided design
 - scientific visualization
- Training & Simulation
- Graphic Arts
- Fine Art
Graphics Applications

- Entertainment
 - film production
 - film effects
 - games
- Science and engineering
 - computer-aided design
 - scientific visualization
- Training & Simulation
- Graphic Arts
- Fine Art

In this course

- You will:
 - explore fundamental ideas
 - learn math essential to graphics
 - implement key algorithms
 - write cool programs
- You will not:
 - learn a lot about OpenGL or DirectX
 (though you will use some OpenGL)
 - write big programs

Course Overview

Topics

- Rendering 3D scenes
 (ray tracing as the basic model)
- Images and image processing
 (featuring sampling and reconstruction)
- Geometric transformations
- The graphics pipeline
 (with a slant toward understanding graphics hardware)
- Modeling in 2D and 3D
- Color science
Images
- What is an image?
- Compositing
- Resampling

Rendering
- ray tracing
- shading & shadows
- transparency
- texture mapping

Geometric transformations
- affine transforms
- perspective transforms
- viewing

Graphics pipeline
- rasterization
- interpolation
- z-buffer
- vertex and fragment ops
Modeling

- splines
- parametric surfaces
- triangle meshes

Prerequisites

- Programming
 - ability to read, write, and debug small Java programs (10s of classes)
 - understanding of very basic data structures
 - no serious software design required

- Mathematics
 - vector geometry (dot/cross products, etc.)
 - linear algebra (just basic matrices in 2-4D)
 - basic calculus (simple derivatives)
 - graphics is a good place to pick up some, but not all, of this

Course mechanics

see web site: