
CS 465 Program 1: Ray I

out: Monday 28 August 2006
due: Tuesday 12 September 2006

1 Overview

Ray tracing is a simple and powerful algorithm for rendering images. Within the accuracy of the
scene and shading models and with enough computing time, the images produced by a ray tracer
can be physically accurate and can appear indistinguishable from real images1. Your ray tracer will
not be able to produce physically accurate images, but later in the semester you will extend it to
produce nice looking images with many interesting effects. If you really catch the ray tracing bug,
you can go on to take CS 665, where you will learn how to build a modern, physically accurate ray
tracer.

In this assignment, your ray tracer will have support for:

• Spheres and axis-aligned boxes

• Lambertian and Phong shading

• Point lights with shadows

• Arbitrary perspective cameras

Some framework code is provided to save you the time to implement I/0 and vector operations.
However, the framework does not contain any code that does any actual ray tracing—you will
develop that code yourself.

When you write the ray tracing code, you have the freedom to determine the design you believe is
best. You may want to add some classes to the program, and there are many choices about where to
put the various parts of the computation. Any solution that correctly meets the requirements below
and is clearly written will recieve full credit. The textbook, the lectures, and the course staff are all
sources of information about good approaches to coding up a ray tracer.

This is not to say that you need to write a lot of new code. For reference, the framework contains 19
classes with about 2000 lines of code (1500 of which are in the parser and the vector math classes),
and our solution contains three small additional classes and about 600 additional lines of code.

1See http://www.graphics.cornell.edu/online/box/compare.html for a famous example

1



CS 465—Ray I 2

2 Requirements

1. Use a ray tracing algorithm.

2. Support arbitrary perspective projections as described in the file format section below.

3. Support spheres and axis-aligned boxes.

4. Support the Lambertian and Blinn-Phong shading models, as defined in Shirley 9.1–9.2 and
in the lecture notes.

5. Support point lights that provide illumination that does not fall off with distance.

You do not need to worry about malformed input, either syntactically or semantically. For instance,
you will not be given a sphere with a negative radius or a scene without a camera.

3 File format

The input file for your ray tracer is in XML. An XML file contains sequences of nestedelements
that are delimited by HTML-like angle-bracket tags. For instance, the XML code:

<scene>
<camera>
</camera>
<surface type=Sphere>

<center>1.0 2.0 3.0</center>
</surface>

</scene>

contains four elements. One is ascene element that contains two others, calledcamera and
surface . Thesurface element has anattribute namedtype that has the valueSphere . It
also contains acenter element that contains the text “1.0 2.0 3.0”, which in this context would be
interpreted as the 3D point(1, 2, 3).

An input file for the ray tracer always contains onescene element, which is allowed to contains
tags of the following types:

• surface : This element describes a geometric object. It must have an attributetype with
valueSphere or Box. It can contain ashader element to set the shader, and also geometric
parameters depending on its type:

– for sphere:center , containing a 3D point, andradius , containing a real number.

– for box: minPt andmaxPt , each containing a 3D point. If the two points are(xmin, ymin, zmin)
and(xmax, ymax, zmax) then the box is[xmin, xmax]× [ymin, ymax]× [zmin, zmax].

• camera : This element describes the camera. It is described by the following elements:

– viewPoint , a 3D point that specifies the center of projection.



CS 465—Ray I 3

– viewDir , a 3D vector that specifies the direction toward which the camera is looking.
Its magnitude is not used.

– viewUp , a 3D vector that is used to determine the orientation of the image.

– imagePlaneNormal , a 3D vector that specifies the normal to the projection plane.
Its magnitude is not used, and negating its direction has no effect. By default it is equal
to the view direction.

– imagePlaneDistance , a real numberd giving the distance from the image plane to
the center of projection.

– viewWidth andviewHeight , two real numbers that give the dimensions of viewing
window on the image plane.

– image : This element is just a pair of integers that specify the size of the image in pixels.

The camera’s view is determined by the center of projection (the viewpoint) and a view win-
dow of sizeviewWidth by viewHeight . The window’s center is positioned along the
view direction at a distanced from the viewpoint. It is oriented in space so that it is perpen-
dicular to the image plane normal and its top and bottom edges are perpendicular to the up
vector.

• light : This element describes a light. It contains the 3D pointposition and the RGB
colorcolor .

• shader : This element describes how a surface should be shaded. It must have an attribute
type with value Lambertian or Phong . The Lambertian shader uses the RGB color
diffuseColor , and the Phong shader additionally uses the RGB colorspecularColor
and the real numberexponent . A shader can appear inside a surface element, in which case
it applies to that surface. It can also appear directly in the scene, which is useful if you want
to give it a name and refer to it later from inside a surface (see below).

If the same object needs to be referenced in several places, for instance when you want to use one
shader for many surfaces, you can use the attributename to give it a name, then later include a
reference to it by using the attributeref . For instance:

<shader type="Lambertian" name="gray">
<diffuseColor>0.5 0.5 0.5</diffuseColor>

</shader>
<surface type="Sphere">

<center>0 0 0</center>
<shader ref="gray"/>

</surface>
<surface type="Sphere">

<center>5 0 0</center>
<shader ref="gray"/>

</surface>

applies the same shader to two spheres.

Really, the file format is very simple and from the examples we provide you should have no trouble
constructing any scene you want.



CS 465—Ray I 4

4 Framework

The framework for this assignment includes a simple main program, some utility classes for vector
math, a parser for the input file format, and stubs for the classes that are required by the parser.

4.1 Parser

TheParser class contains a simple and, we like to think, elegant parser based on Java’s built-in
XML parsing. The parser simply reads a XML document and instantiates an object for each XML
entity, adding it to its containing element by callingset . . . or add . . . methods on the containing
object.

For instance, the input

<scene>
<surface type="Sphere">

<shader type="Lambertian">
<diffuseColor>0 0 1</diffuseColor>

</shader>
<center>1 2 3</center>
<radius>4</radius>

</surface>
</scene>

results in the following construction sequence:

1. Create the scene.

2. Create an object of classSphere and add it to the scene by callingScene.addSurface .
This is OK becauseSphere extends theSurface class.

3. Create an object of classLambertian and add it to the sphere usingSphere.setShader .
This is OK becauseLambertian implements theShader interface.

4. CallsetDiffuseColor(new Color(0, 0, 1)) on the shader.

5. CallsetCenter(new Point3D(1, 2, 3)) on the sphere.

6. CallsetRadius(4) on the sphere.

Which elements are allowed where in the file is determined by which classes contain appropriate
methods, and the types of those methods’ parameters determine how the tag’s contents are parsed
(as a number, a vector, etc.). There is more detail for the curious in the header comment of the
Parser class.

The practical result of all this is that your ray tracer is handed a scene that contains objects that are
in one-to-one correspondence with the elements in the input file. You shouldn’t need to change the
parser in any way.



CS 465—Ray I 5

4.2 RayTracer

This class holds the entry point for the program. Themain method is provided, so that your
program will have an command-line interface compatible with ours. It treats each command line
argument as the name of an input file, which it parses, renders an image, and writes the image to a
PNG file. The methodRayTracer.renderImage , which you need to write, is called to do the
actual rendering.

4.3 Image

This class contains an array offloat s and the requisite code to get and set pixels and to output the
image to a PNG file.

4.4 Theray.math package

This package contains classes to represent 2D and 3D points and vectors, as well as RGB colors.
They support all the standard vector arithmetic operations you’re likely to need, including dot and
cross products for vectors and gamma correction for colors.

4.5 Other classes

The other classes in the framework all exist because they are required in order for the parser to de-
code files in the input format described above. Since the XML entities in the file correspond directly
to Java objects constructed by the parser, there is a class for every type of XML tag that can appear
in the file, includingScene , Image , Camera, Light ; Surface and its subtypesSphere and
Box; andShader and its subtypesLambertian andPhong . These classes generally contain
only the fields and set/add methods required to implement the file format.

5 Submission and FAQ

Submission will be through CMS. A FAQ page will be kept on the course website detailing any new
questions and their answers brought to the attention of the course staff.


