# Introduction to Color Science: Additive Color for Computer Graphics 

CS 465, Prof. Steve Marschner November 21, 2005

Michael J. Murdoch<br>Eastman Kodak Company

## Stare at the Red Dot.



## Color

- Color is a perception resulting from a combination of physical stimulation and psychological interpretation.

© Eastman Kodak Company, 2005


## Additive RGB Intensity

- Primaries: Red , Green , and Blue
- A monitor is an additive system, meaning colors may be synthesized using linear combinations of the primaries.
- Example:

- Perhaps you recall that Code Values are nonlinear? Using an sRGB monitor, linear intensity values ( $0.8,0.6,0.2$ ) correspond to 8 -bit nonlinear code values (231, 203, 124).


## Additive Color Using Component Vectors

- In a 3-D ( $\mathrm{R}, \mathrm{G}, \mathrm{B}$ ) intensity space $\mathbf{R}$ unit vector is $(1,0,0)$ $\mathbf{G}$ unit vector is $(0,1,0)$ B unit vector is $(0,0,1)$
- $0.8 \mathbf{R}+0.6 \mathbf{G}+0.2 \mathbf{B}=$ (0.8, 0.6, 0.2)
- Black is $(0,0,0)$
- White is $(1,1,1)$



## Chromaticity Diagram

- Chromaticity: how much of each primary, relative to the others.

$$
\begin{aligned}
& r=R /(R+G+B) \\
& g=G /(R+G+B) \\
& b=1-r-g
\end{aligned}
$$

- Chromaticity is inherently 2-D, thus it has less information than RGB.
- Triangle connecting $R, G$, and $B$ points is the Gamut Boundary, indicating the range of colors that may be synthesized.
- Additive colors found at the center of mass of primaries.

- White ( $\mathrm{R}=\mathrm{G}=\mathrm{B}=1$ ) means rg (0.333, 0.333)


## Additive Spectral Power

- Light may be described in terms of Spectral Power Distribution.
- Relative (or absolute) amount of power (i.e., photons, Watts/sr/m²/nm) in each of a number of wavelength bands
- Discrete spectra may be thought of has unit vectors.
- Example: CRT monitor R, G, and B emission



## Human Eye Response

- Eyes have light-sensitive cells
- Rods (scotopic vision) work in low light levels, and see one band of the spectrum. (plot is approximate)
- Colors are not seen in low light.

- Cones (photopic vision) work in high light levels.
- There are three types of cones ( $\rho, \gamma, \beta$ ); each sees a different band of the spectrum.
- Colors are discerned by their relative power in each band.



## 1931 Color Matching Experiment

- Observers looked at monochromatic colors.
- They were asked to dial in additive mixtures of primary colors that appeared to match each monochromatic color. Metamers!

- Sometimes, the observer wanted a dial to go below zero! In this case, the primary was moved to the other side, like adding "negative light" to the monochrome color.


## Color Matching Functions

- The plot shows the results of the 1931 color matching experiment: the relative amounts of $R, G$, and $B$ to match each monochrome spectral color.

- The set of monochrome spectral colors (aka spectrum locus) is shown on an r,g chromaticity diagram.
- Note how many colors have r < 0



## CIE (Commission Internationale de l’Eclairage) 1931 Color Matching Functions

- 1931 Standard Observer:

The experimental color matching functions were transformed to this set of all-positive curves, called $\bar{x}, \bar{y}, \bar{z}$.

- $\overline{\mathrm{y}}$ used to compute Luminance, Y .
- The "primaries," called X, Y, Z, corresponding to these curves are imaginary! Meaning they can't physically be made.
- The CIE 1931 xy Chromaticity Diagram
- Note that the spectrum locus fits inside the XYZ triangle.




## CIE Colorimetry: $\overline{\mathbf{x}} \overline{\mathbf{y}} \overline{\mathbf{z}}, \mathbf{X Y Z}$, xyz

- XYZ tristimulus values are computed from a spectral power distribution $\Phi(\lambda)$ and the three color matching functions, $\overline{\mathrm{x}}(\lambda), \overline{\mathrm{y}}(\lambda)$, and $\bar{z}(\lambda)$.

$$
\begin{aligned}
& X=k \sum \Phi(\lambda) \bar{x}(\lambda) \Delta \lambda \\
& Y=k \sum \Phi(\lambda) \bar{y}(\lambda) \Delta \lambda \\
& Z=k \sum \Phi(\lambda) \bar{z}(\lambda) \Delta \lambda
\end{aligned}
$$

- Two colors with same XYZ are Metamers.
- $k$ often chosen so white $Y=100$.
- xyz chromaticity values are computed from XYZ tristimulus values.

$$
x=\frac{X}{X+Y+Z} \quad y=\frac{Y}{X+Y+Z} \quad z=1-x-y
$$

- xyY often used, because z is redundant.

Example: Y , using $\overline{\mathrm{y}}$


Y is area under this curve

## Balancing RGB to Synthesize White

- White is a sum of 3 primaries.
- Example, sRGB, a standard set of RGB primaries

|  | X | Y | Z |
| :--- | :---: | :---: | :---: |
| R | 41 | 21 | 2 |
| G | 36 | 72 | 12 |
| $B$ | 18 | 7 | 95 |
| Sum | 95 | 100 | 109 |
| D65 Standard White |  |  |  |$\}$

- White is a perceptual label.
- Must be "achromatic"
- Must be "bright"
- Depends on surroundings

Luminance
Contribution:


RGB Power Spectra Scaled to Add to D65 White


## What is White?



## Primary Matrix (RGB to XYZ)

- Need to mathematically predict XYZ tristimulus values resulting from a set of RGB values
- Enter the Primary Matrix, aka Pmat, aka Phosphor Matrix
- Example for sRGB primaries \& D65 white

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{lll}
41.2 & 35.8 & 18.0 \\
21.3 & 71.5 & 7.22 \\
1.93 & 11.9 & 95.0
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right] \quad \text { Note the }
$$

|  | X | Y | Z |
| :---: | :---: | :---: | :---: |
| R | 41 | 21 | 2 |
| G | 36 | 72 | 12 |
| B | 18 | 7 | 95 |

- Invert the $3 \times 3$ Pmat to compute RGBs required to attain desired XYZ.
- Think of RGB and XYZ as different Primary sets.
- An inverse and forward Pmat from different RGB Primary sets may be combined to transform from one set of RGB to another.

$$
\left[\begin{array}{l}
R_{2} \\
G_{2} \\
B_{2}
\end{array}\right]=\mathbf{P}_{2} \mathbf{P}_{1}^{-1}\left[\begin{array}{l}
R_{1} \\
G_{1} \\
B_{1}
\end{array}\right]
$$

## CIE 1931 xy Chromaticity Diagram

- sRGB primaries' xy chromaticities

|  | x | y |
| :--- | :---: | :---: |
| R | 0.6400 | 0.3300 |
| G | 0.3000 | 0.6000 |
| B | 0.1500 | 0.0600 |
| White | 0.3127 | 0.3290 |

- Triangle is sRGB gamut boundary.
- sRGB standard white point has chromaticities equal to CIE Standard Illuminant D65.
- Addition via Center of Mass



## Chromaticity Diagram: Conceptualizing a Spectrum



## Primaries and Color Matching Functions

- Each set of primaries has a corresponding set of color matching functions
- 1931 Color-Matching Primaries
- XYZ








## RGB Implies a System Model: Example sRGB

- Pmat is only half the story. A real system has a Characteristic Curve, recalling the nonlinearity between Code Value and Luminance.
- sRGB is an encoding standard based on an idealized monitor/TV.
- sRGB (ITU-R Rec 709) Primaries (same as HDTV)
- Gamma 2.2-like Characteristic Curve
- The model is simple.



$$
\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{lll}
41.2 & 35.8 & 18.0 \\
21.3 & 71.5 & 7.22 \\
1.93 & 11.9 & 95.0
\end{array}\right]\left[\begin{array}{c}
R \\
G \\
B
\end{array}\right]
$$

## Color Appearance

- Color is perceived, not measured.
- XYZ is useful for quantifying color stimuli and measuring how well they match one another.
- BUT, the appearance of a stimulus as a color depends on (among other things)
- Absolute luminance of the stimulus
- Surrounding color(s)
- State of adaptation of the observer
- Predicting color appearance is difficult, especially in images.


## Example: Surround Effects

- The appearance of colors can be influenced by their surroundings.



## References \& Further Reading

- Hunt, R.W.G., The Reproduction of Colour, 5ed. John Wiley \& Sons, 2004.
- Giorgianni, E., and Madden, T., Digital Color Management: Encoding Solutions. Addison-Wesley, 1998. (out of print!)
- Berns, R.S., Billmeyer and Saltzman's Principles of Color Technology, 3ed. Wiley-Interscience, 2000.

