Introduction to Color Science: Additive Color for Computer Graphics

CS 465, Prof. Steve Marschner November 21, 2005

Michael J. Murdoch

Eastman Kodak Company

Stare at the Red Dot.

Color

• Color is a perception resulting from a combination of physical stimulation and psychological interpretation.

Additive RGB Intensity

- Primaries: Red , Green , and Blue
- A monitor is an additive system, meaning colors may be synthesized using **linear** combinations of the primaries.

• Example:
$$0.8 * = 0.6 * = 0.6 * = 0.2 * = 1000 + 0.2 * = 0.2 *$$

Perhaps you recall that Code Values are nonlinear?
 Using an sRGB monitor, linear intensity values (0.8, 0.6, 0.2)
 correspond to 8-bit nonlinear code values (231, 203, 124).

Additive Color Using Component Vectors

- In a 3-D (R,G,B) intensity space
 R unit vector is (1,0,0)
 G unit vector is (0,1,0)
 B unit vector is (0,0,1)
- 0.8 **R** + 0.6 **G** + 0.2 **B** = (0.8, 0.6, 0.2)
- Black is (0, 0, 0)
- White is (1, 1, 1)

Chromaticity Diagram

• Chromaticity: how much of each primary, relative to the others.

$$r = R / (R+G+B)$$

g = G / (R+G+B)
b = 1 - r - g

- Chromaticity is inherently 2-D, thus it has less information than RGB.
- Triangle connecting R, G, and B points is the Gamut Boundary, indicating the range of colors that may be synthesized.
- Additive colors found at the center of mass of primaries.
- White (R=G=B=1) means rg (0.333, 0.333)

Additive Spectral Power

- Light may be described in terms of Spectral Power Distribution.
- Relative (or absolute) amount of power (i.e., photons, Watts/sr/m²/nm) in each of a number of wavelength bands
- Discrete spectra may be thought of has unit vectors.
- Example: CRT monitor R, G, and B emission

Human Eye Response

- Eyes have light-sensitive cells
- Rods (scotopic vision) work in low light levels, and see one band of the spectrum. (plot is approximate)
- Colors are not seen in low light.

- Cones (photopic vision) work in high light levels.
- There are three types of cones (ρ, γ, β); each sees a different band of the spectrum.
- Colors are discerned by their relative power in each band.

1931 Color Matching Experiment

- Observers looked at monochromatic colors.
- They were asked to dial in additive mixtures of primary colors that appeared to match each monochromatic color. Metamers!

Sometimes, the observer wanted a dial to go below zero! In this case, the primary was moved to the other side, like adding "negative light" to the monochrome color.

Color Matching Functions

 The plot shows the results of the 1931 color matching experiment: the relative amounts of R, G, and B to match each monochrome spectral color.

- The set of monochrome spectral colors (aka spectrum locus) is shown on an r,g chromaticity diagram.
- Note how many colors have r < 0

CIE (Commission Internationale de l'Eclairage) 1931 Color Matching Functions

- 1931 Standard Observer: The experimental color matching functions were transformed to this set of all-positive curves, called x, y, z.
- \overline{y} used to compute Luminance, Y.
- The "primaries," called X, Y, Z, corresponding to these curves are imaginary! Meaning they can't physically be made.
- The CIE 1931 xy Chromaticity Diagram
- Note that the spectrum locus fits inside the XYZ triangle.

CIE Colorimetry: $\bar{x} \ \bar{y} \ \bar{z}$, XYZ , xyz

• XYZ tristimulus values are computed from a spectral power distribution $\Phi(\lambda)$ and the three color matching functions, $\overline{x}(\lambda)$, $\overline{y}(\lambda)$, and $\overline{z}(\lambda)$.

$$X = k \sum \Phi(\lambda) \overline{x}(\lambda) \Delta \lambda$$
$$Y = k \sum \Phi(\lambda) \overline{y}(\lambda) \Delta \lambda$$
$$Z = k \sum \Phi(\lambda) \overline{z}(\lambda) \Delta \lambda$$

- Two colors with same XYZ are Metamers.
- k often chosen so white Y = 100.
- xyz chromaticity values are computed from XYZ tristimulus values.

$$x = \frac{X}{X+Y+Z} \quad y = \frac{Y}{X+Y+Z} \quad z = 1-x-y$$

• xyY often used, because z is redundant.

Balancing RGB to Synthesize White

Luminance

Contribution:

- White is a sum of 3 primaries.
- Example, sRGB, a standard set of RGB primaries

	X	Y	Z		
R	41	21	2		
G	36	72	12		
В	18	7	95		
Sum	95	100	109		
D65 Standard White					

- White is a perceptual label.
 - Must be "achromatic"
 - Must be "bright"
 - Depends on surroundings

What is White?

Primary Matrix (RGB to XYZ)

- Need to mathematically predict XYZ tristimulus values resulting from a set of RGB values
- Enter the Primary Matrix, aka Pmat, aka Phosphor Matrix
- Example for sRGB primaries & D65 white

- Invert the 3×3 Pmat to compute RGBs required to attain desired XYZ.
- Think of RGB and XYZ as different Primary sets.
- An inverse and forward Pmat from different RGB Primary sets may be combined to transform from one set of RGB to another.

$$\begin{bmatrix} R_2 \\ G_2 \\ B_2 \end{bmatrix} = \mathbf{P}_2 \mathbf{P}_1^{-1} \begin{bmatrix} R_1 \\ G_1 \\ B_1 \end{bmatrix}$$

CIE 1931 xy Chromaticity Diagram

• sRGB primaries' xy chromaticities

	х	У
R	0.6400	0.3300
G	0.3000	0.6000
В	0.1500	0.0600
White	0.3127	0.3290

- Triangle is sRGB gamut boundary.
- sRGB standard white point has chromaticities equal to CIE Standard Illuminant D65.
- Addition via Center of Mass

Chromaticity Diagram: Conceptualizing a Spectrum

Primaries and Color Matching Functions

• Each set of primaries has a corresponding set of color matching functions

RGB Implies a System Model: Example sRGB

- Pmat is only half the story. A real system has a Characteristic Curve, recalling the nonlinearity between Code Value and Luminance.
- sRGB is an encoding standard based on an idealized monitor/TV.
 - sRGB (ITU-R Rec 709) Primaries (same as HDTV)
 - Gamma 2.2-like Characteristic Curve
- The model is simple.

Color Appearance

- Color is perceived, not measured.
- XYZ is useful for quantifying color stimuli and measuring how well they match one another.
- BUT, the appearance of a stimulus as a color depends on (among other things)
 - Absolute luminance of the stimulus
 - Surrounding color(s)
 - State of adaptation of the observer
- Predicting color appearance is difficult, especially in images.

Example: Surround Effects

• The appearance of colors can be influenced by their surroundings.

References & Further Reading

- Hunt, R.W.G., *The Reproduction of Colour, 5ed.* John Wiley & Sons, 2004.
- Giorgianni, E., and Madden, T., *Digital Color Management: Encoding Solutions*. Addison-Wesley, 1998. (out of print!)
- Berns, R.S., *Billmeyer and Saltzman's Principles of Color Technology, 3ed*. Wiley-Interscience, 2000.