
© 2004 Steve Marschner • 1Cornell CS465 Fall 2004 • Lecture 3

Ray Tracing

CS 465 Lecture 3

© 2004 Steve Marschner • 2Cornell CS465 Fall 2004 • Lecture 3

Ray tracing idea

© 2004 Steve Marschner • 3Cornell CS465 Fall 2004 • Lecture 3

Ray tracing algorithm

for each pixel {

 compute viewing ray

 intersect ray with scene

 compute illumination at visible point

 put result into image

 }

© 2004 Steve Marschner • 4Cornell CS465 Fall 2004 • Lecture 3

Plane projection in drawing

[C
S

41
7

Sp
ri

ng
 2

00
2]

© 2004 Steve Marschner • 5Cornell CS465 Fall 2004 • Lecture 3

Plane projection in photography

• This is another model for what we are doing
– applies more directly in realistic rendering

[C
S

41
7

Sp
ri

ng
 2

00
2]

© 2004 Steve Marschner • 6Cornell CS465 Fall 2004 • Lecture 3

Generating eye rays

• Use window analogy directly

© 2004 Steve Marschner • 7Cornell CS465 Fall 2004 • Lecture 3

Vector math review

• Vectors and points
• Vector operations

– addition
– scalar product

• More products
– dot product
– cross product

© 2004 Steve Marschner • 8Cornell CS465 Fall 2004 • Lecture 3

Ray: a half line

• Standard representation: point p and direction d

– this is a parametric equation for the line
– lets us directly generate the points on the line
– if we restrict to t > 0 then we have a ray
– note replacing d with ad doesn’t change ray (a > 0)

© 2004 Steve Marschner • 9Cornell CS465 Fall 2004 • Lecture 3

Generating eye rays

• Just need to compute the view plane point q:

– but where exactly is the view rectangle?

© 2004 Steve Marschner • 10Cornell CS465 Fall 2004 • Lecture 3

Generating eye rays

• Positioning the view rectangle
– lots of ways to do this; here is one
– center is 1 unit away in the forward direction
– size is w by h (more on w and h in a moment)
– orientation?
– establish three vectors to be

camera basis

© 2004 Steve Marschner • 11Cornell CS465 Fall 2004 • Lecture 3

Generating rays in camera basis

• Compute image plane points using u, v, w
– View rect. center is
– Lower left of view rect:

– Upper right of view rect:

– Point at position (u, v):

© 2004 Steve Marschner • 12Cornell CS465 Fall 2004 • Lecture 3

Ray-sphere intersection: algebraic

• Condition 1: point is on ray

• Condition 2: point is on sphere
– assume unit sphere; see Shirley or notes for general

• Substitute:

– this is a quadratic equation in t

© 2004 Steve Marschner • 13Cornell CS465 Fall 2004 • Lecture 3

Ray-sphere intersection: algebraic

• Solution for t by quadratic formula:

– simpler form holds when d is a unit vector
but we won’t assume this in practice (reason later)

– I’ll use the unit-vector form to make the geometric
interpretation

© 2004 Steve Marschner • 14Cornell CS465 Fall 2004 • Lecture 3

Ray-sphere intersection: geometric

© 2003 Steve Marschner • 15Cornell CS417 Spring 2003 • Lecture 33

Ray-triangle intersection

• Condition 1: point is on ray

• Condition 2: point is on plane

• Condition 3: point is on the inside of all three edges
• First solve 1&2 (ray–plane intersection)

– substitute and solve for t:

© 2003 Steve Marschner • 16Cornell CS417 Spring 2003 • Lecture 33

Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces

© 2003 Steve Marschner • 17Cornell CS417 Spring 2003 • Lecture 33

Inside-edge test

• Need outside vs. inside
• Reduce to clockwise vs. counterclockwise

– vector of edge to vector to x

• Use cross product to decide

© 2003 Steve Marschner • 18Cornell CS417 Spring 2003 • Lecture 33

Ray-triangle intersection

© 2004 Steve Marschner • 19Cornell CS465 Fall 2004 • Lecture 3

Image so far

• With eye ray generation and sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);

for 0 <= iy < ny

 for 0 <= ix < nx {

 ray = camera.getRay(ix, iy);

 if (s.intersect(ray, 0, +inf) < +inf)

 image.set(ix, iy, white);

 }

© 2004 Steve Marschner • 20Cornell CS465 Fall 2004 • Lecture 3

Intersection against many shapes

• The basic idea is:

– this is linear in the number of shapes
but there are sublinear methods (acceleration structures)

hit (ray, tMin, tMax) {

 tBest = +inf; hitSurface = null;

 for surface in surfaceList {

 t = surface.intersect(ray, tMin, tMax);

 if t < tBest {

 tBest = t;

 hitSurface = surface;

 }

 }

return hitSurface, t;

}

© 2004 Steve Marschner • 21Cornell CS465 Fall 2004 • Lecture 3

Image so far

• With eye ray generation and scene intersection

Geometry g = new Sphere((0.0, 0.0, 0.0), 1.0);

for 0 <= iy < ny

 for 0 <= ix < nx {

 ray = camera.getRay(ix, iy);

 c = scene.trace(ray, 0, +inf);

 image.set(ix, iy, c);

 }

…

trace(ray, tMin, tMax) {

 surface, t = hit(ray, tMin, tMax);

 if (surface != null) return surface.color();

 else return black;

}

© 2004 Steve Marschner • 22Cornell CS465 Fall 2004 • Lecture 3

Shading

• Compute light reflected toward camera
• Inputs:

– eye direction
– light direction

(for each of many lights)
– surface normal
– surface parameters

(color, shininess, …)

• More on this in the
next lecture

© 2004 Steve Marschner • 23Cornell CS465 Fall 2004 • Lecture 3

Image so far

trace(Ray ray, tMin, tMax) {

 surface, t = hit(ray, tMin, tMax);

 if (surface != null) {

 point = ray.evaluate(t);

 normal = surface.getNormal(point);

 return surface.shade(ray, point,

 normal, light);

 }

 else return black;

}

…

shade(ray, point, normal, light) {

 v_E = –normalize(ray.direction);

 v_L = normalize(light.pos - point);

 // compute shading

}

© 2004 Steve Marschner • 24Cornell CS465 Fall 2004 • Lecture 3

Shadows

• Surface is only illuminated if nothing blocks its view of
the light.

• With ray tracing it’s easy to check
– just intersect a ray with the scene!

© 2004 Steve Marschner • 25Cornell CS465 Fall 2004 • Lecture 3

Image so far

shade(ray, point, normal, light) {

 shadRay = (point, light.pos - point);

 if (shadRay not blocked) {

 v_E = –normalize(ray.direction);

 v_L = normalize(light.pos - point);

 // compute shading

 }

 return black;

}

© 2004 Steve Marschner • 26Cornell CS465 Fall 2004 • Lecture 3

Multiple lights

• Important to fill in black shadows
• Just loop over lights, add contributions
• Ambient shading

– black shadows are not really right
– one solution: dim light at camera
– alternative: all surface receive a bit more light

• just add a constant “ambient” color to the shading…

© 2004 Steve Marschner • 27Cornell CS465 Fall 2004 • Lecture 3

Image so far

shade(ray, point, normal, lights) {

 result = ambient;

 for light in lights {

 if (shadow ray not blocked) {

 result += shading contribution;

 }

 }

 return result;

}

