Images and Displays

CS465 Lecture 2

Cornell CS465 Fall 2005 • Lecture 2

© 2005 Steve Marschner • I

What is an image?

- A photographic print
- A photographic negative?
- This projection screen
- Some numbers in RAM?

Cornell CS465 Fall 2005 • Lecture 2

© 2005 Steve Marschner • 2

An image is:

- A 2D distribution of intensity or color
- A function defined on a two-dimensional plane

$$I:\mathbb{R}^2\to\dots$$

- Note: no mention of pixels yet
- To do graphics, must:
 - represent images—encode them numerically
 - display images—realize them as actual intensity distributions

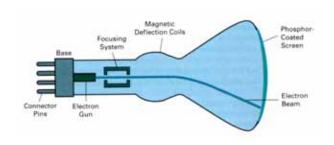
Representative display technologies

Computer displays

- Raster CRT display
- LCD display

Printers

- Laser printer
- Inkjet printer


Cornell CS465 Fall 2005 • Lecture 2

© 2005 Steve Marschner • 3

Cornell CS465 Fall 2005 • Lecture 2

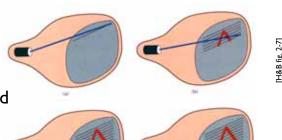
Cathode ray tube

- First widely used electronic display
 - developed for TV in the 1920s-1930s

Cornell CS465 Fall 2005 • Lecture 2

© 2005 Steve Marschner • 5

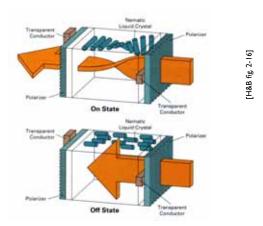
Raster CRT display


- Scan pattern fixed in display hardware
- Intensity modulated to produce image

Originally for TV

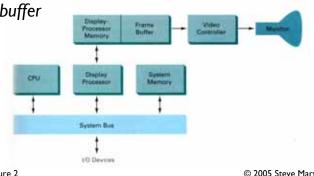
- (continuous analog signal)

• For computer, intensity determined by contents of framebuffer


Cornell CS465 Fall 2005 • Lecture 2

© 2005 Steve Marschner • 6

LCD flat panel or projection display


- Principle: block or transmit light by twisting its polarization
- Intermediate intensity levels possible by partial twist
- Fundamentally raster technology
- Fixed format

Raster display system

- · Screen image defined by a 2D array in RAM
 - for CRT, read out and convert to analog in sync with scan
- In most systems today, it's in a separate memory

• The memory area that maps to the screen is called the frame buffer

Cornell CS465 Fall 2005 • Lecture 2

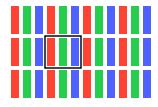
© 2005 Steve Marschner • 8

[H&B fig. 2-29]

Cornell CS465 Fall 2005 • Lecture 2

Color displays

- Operating principle: humans are trichromatic
 - match any color with blend of three
 - therefore, problem reduces to producing 3 images and blending
- Additive color
 - blend images by sum
 - e.g. overlapping projection
 - e.g. unresolved dots
 - R, G, B make good primaries

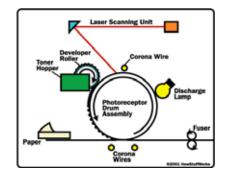


© 2005 Steve Marschner • 9

Color displays

CRT: phosphor dot pattern to produce finely interleaved color images

LCD: interleaved R,G,B pixels


Cornell CS465 Fall 2005 • Lecture 2

© 2005 Steve Marschner • 10

Laser printer

Cornell CS465 Fall 2005 • Lecture 2

- Xerographic process
- Like a photocopier but with laser-scanned raster as source image
- Key characteristics
 - image is binary
 - resolution is high
 - very small, isolated dots are not possible

Inkjet printer

- · Liquid ink sprayed in small drops
 - very small—measured in picoliters
- Head with many jets scans across paper
- Key characteristics:
 - image is binary (drop or no drop; no partial drops)
 - isolated dots are reproduced well

HEATED AND

SIZE AND

COLLAPSES DROP BREAKS

TO INITIAL

Cornell CS465 Fall 2005 • Lecture 2

© 2005 Steve Marschner • 11

Cornell CS465 Fall 2005 • Lecture 2

Raster image representation

- All these devices suggest 2D arrays of numbers
- Big advantage: represent arbitrary images
 - approximate arbitrary functions with increasing resolution
 - works because memory is cheap (brute force approach!)

Cornell CS465 Fall 2005 • Lecture 2

© 2005 Steve Marschner • 13

Greenspun]

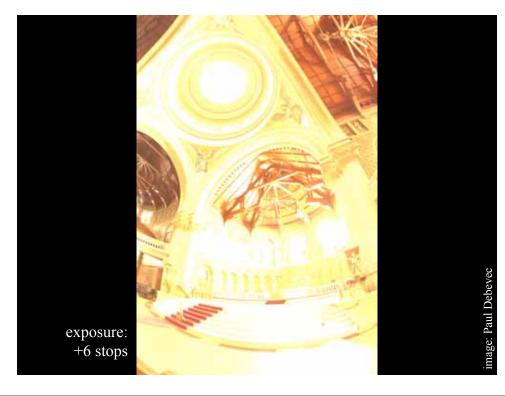
Meaning of a raster image

- Meaning of a given array is a function on 2D
- Define meaning of array = result of output device?
 - that is, piecewise constant for LCD, blurry for CRT
 - but: we don't have just one output device
 - but: want to use images we can't display (e.g. too big)
- Abstracting from device, problem is reconstruction
 - image is a sampled representation
 - pixel means "this is the intensity around here"
 - LCD: intensity is constant over square regions
 - CRT: intensity varies smoothly across pixel grid
 - will discuss specifics of reconstruction later

Cornell CS465 Fall 2005 • Lecture 2

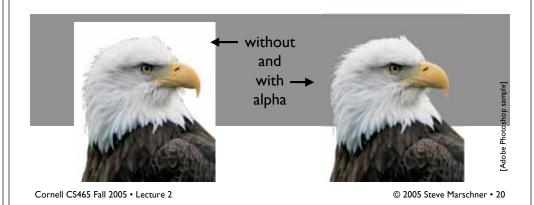
© 2005 Steve Marschner • 14

Datatypes for raster images


- Bitmaps: boolean per pixel (I bpp): $I:\mathbb{R}^2 o \{0,1\}$
 - interp. = black and white; e.g. fax
- Grayscale: integer per pixel: $I: \mathbb{R}^2 \to [0,1]$
 - interp. = shades of gray; e.g. black-and-white print
 - precision: usually byte (8 bpp); sometimes 10, 12, or 16 bpp
- Color: 3 integers per pixel: $I: \mathbb{R}^2 \to [0,1]^3$
 - interp. = full range of displayable color; e.g. color print
 - precision: usually byte[3] (24 bpp)
 - sometimes 16 (5+6+5) or 30 or 36 bpp
 - indexed color: a fading idea

Datatypes for raster images

- Floating point: $I:\mathbb{R}^2 \to \mathbb{R}_+$ or $I:\mathbb{R}^2 \to \mathbb{R}_+^3$
 - more abstract, because no output device has infinite range
 - provides high dynamic range (HDR)
 - represent real scenes independent of display
 - becoming the standard intermediate format in graphics processors
- · Clipping and white point
 - common to compute FP, then convert to integer
 - full range of values may not "fit" in display's output range
 - simplest solution: choose a maximum value, scale so that value becomes full intensity (2^n-1) in an n-bit integer image)



Datatypes for raster images

- For color or grayscale, sometimes add *alpha* channel
 - describes transparency of images
 - more on this in a few lectures

Storage requirements for images

1024x1024 image (1 megapixel)

- bitmap: I28KB

- grayscale 8bpp: IMB

- grayscale 16bpp: 2MB

- color 24bpp: 3MB

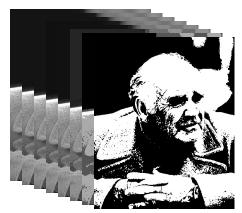
- floating-point HDR color: I2MB

Cornell CS465 Fall 2005 • Lecture 2

© 2005 Steve Marschner • 21

Converting pixel formats

- Color to gray
 - could take one channel (blue, say)
 - leads to odd choices of gray value
 - combination of channels is better
 - but different colors contribute differently to lightness
 - - which is lighter, full blue or full green?
 - good choice: gray = 0.2 R + 0.7 G + 0.1 B
 - more on this in color, later on



© 2005 Steve Marschner • 22

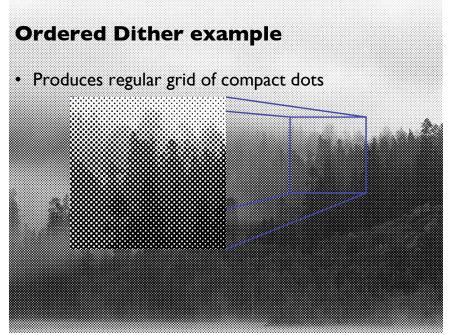
Converting pixel precision

• Up is easy; down loses information—be careful

I bpp (2 grays)

Dithering

Cornell CS465 Fall 2005 • Lecture 2


- When decreasing bpp, we quantize
- Make choices consistently: banding
- Instead, be inconsistent—dither
 - turn on some pixels but not others in gray regions
 - a way of trading spatial for tonal resolution
 - choose pattern based on output device
 - laser, offset: clumped dots required (halftone)
 - inkjet, screen: dispersed dots can be used

Dithering methods

- · Ordered dither
 - based on traditional, optically produced halftones
 - produces larger dots
- Diffusion dither
 - takes advantage of devices that can reproduce isolated dots
 - the modern winner for desktop printing

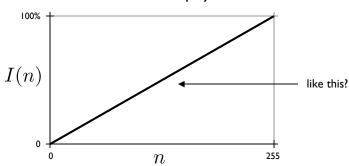
Philip Green

Cornell CS465 Fall 2005 • Lecture 2

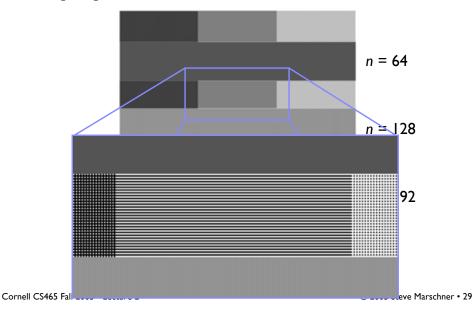
© 2005 Steve Marschner • 26

Cornell CS465 Fall 2005 • Lecture 2

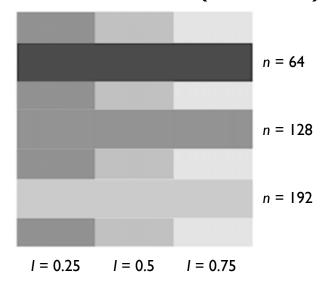
© 2005 Steve Marschner • 25


Diffusion dither

Cornell CS465 Fall 2005 • Lecture 2 © 2005 Steve Marschner • 27


Intensity units in images

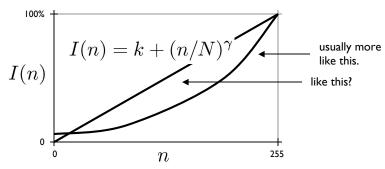
- Say pixel value is 123
 - this means the intensity is 123. 123 what?
 - look to devices to motivate definition
 - transfer function of a display



Cornell CS465 Fall 2005 • Lecture 2

Display transfer function

Display transfer function (simulated)



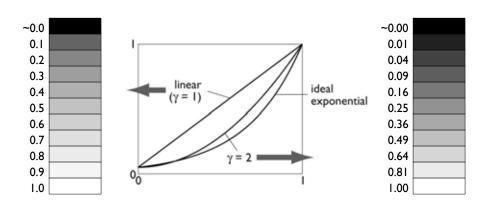
Cornell CS465 Fall 2005 • Lecture 2

© 2005 Steve Marschner • 30

Intensity units in images

- Say pixel value is 123
 - this means the intensity is 123. 123 what?
 - look to devices to motivate definition
 - transfer function of a display

Why nonlinear intensity?


- Original reason: CRTs are like that
 - intensity on screen is proportional to voltage²
- Continuing reason: perceptual uniformity
 - our eyes are sensitive to relative intensity differences
 - this means we can see smaller steps in darker areas
 - therefore we want to concentrate the available quantization levels towards the dark end of the scale
 - for this reason gamma correction is important whenever storing low-precision integer pixel values

Cornell CS465 Fall 2005 • Lecture 2

© 2005 Steve Marschner • 31

Cornell CS465 Fall 2005 • Lecture 2

Why nonlinear intensity?

• Closer to ideal perceptually uniform exponential

Cornell CS465 Fall 2005 • Lecture 2

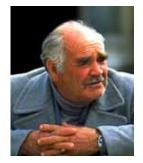
© 2005 Steve Marschner • 33

Gamma correction

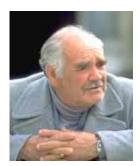
- Sometimes (often, in graphics) we have computed intensities that we want to display linearly
- In the case of an ideal monitor with zero black level,

$$I(n) = (n/N)^{\gamma}$$

(where $N = 2^n - 1$ in *n* bits) so if we define


$$n = Na^{\frac{1}{\gamma}}$$

we will get linear intensity out:


$$I(n) = (Na^{\frac{1}{\gamma}}/N)^{\gamma} = a$$

Cornell CS465 Fall 2005 • Lecture 2 © 2005 Steve Marschner • 34

Gamma correction

 $\begin{array}{c} \text{corrected for} \\ \gamma \text{ lower than} \\ \text{display} \end{array}$

OK

corrected for γ higher than display

Cornell CS465 Fall 2005 • Lecture 2

© 2005 Steve Marschner • 35

Philip Greenspun]