CS 465 Homework 4 Solutions

Problem 1: 2D Transformations
Here are four letter shapes that, in this particular font, are simple transformations of one another:

qbpd

Each letter is positioned with its baseline at $\mathrm{y}=0$ and its left edge aligned with $\mathrm{x}=0$. Express the transformation required to turn p into each of q, b, and d in the three following ways:
(Note these solutions may not be the only way to perform these transformations. Other equivalent solutions will be accepted as well.)

1. as a sequence of affine transformations, using only translation, rotation about the origin, and reflections across coordinate axes. Describe the transformations in words.
$\mathrm{q}:$ Translation to the left by 10 , followed by a reflection across y .
d: Rotation by 180° around the origin, followed by a translation by 10 to the right and up.
b: Translation by 10 down, followed by a reflection across x .
2. as a single 3×3 homogeneous transformation matrix.
$\mathrm{q}:\left[\begin{array}{ccc}1 & 0 & -10 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$ d: $\left[\begin{array}{lll}-1 & 0 & 10 \\ 0 & -1 & 10 \\ 0 & 0 & 1\end{array}\right] \quad$ b: $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & -10 \\ 0 & 0 & 1\end{array}\right]$
3. as a single rotation about a point or a single reflection across a line.
q : Reflection across the line $\mathrm{x}=5$.
d : Rotation around the point $[5,5]$ by 180°.
b : Reflection across the line $\mathrm{y}=5$.

Problem 2: 3D Transformations

Suppose I apply a rotation that maps the x axis to the y axis, the y axis to the z axis, and the z axis to the x axis.

1. What axis and angle can be used to describe this rotation?

You can rotate around the axis $[1,1,1]$ by 60 degrees.
2. What is the 3 -by- 3 matrix of the rotation?

The change of frame matrix will transform each of the original e_{1}, e_{2}, and e_{3} vectors to u, v, w.

Using the change of frame matrix:
$\left[\begin{array}{llll}u & v & w & p \\ 0 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
We have a matrix that will take the x axis to the y axis, y axis to the z axis, and the z axis to the x axis.

