CS 465 Homework 3 Solution

Problem 1: Ripple and renormalization

1. Which of the following filters are ripple free? For those that are not, compute the convolution with c at one point where the value is not 1 . The convolutions are plotted below for all points, but to get credit you only needed to evaluate the convolution at one point.
(Note: Only a single counter example or statement that the filter is ripple free is required for a correct solution. We have included the longer answers only for clarity.)
(a) A box of radius $\frac{3}{4}$

The above plot is the result of $f_{\text {box, } \frac{3}{4}}$ convolved with two impulses at $x=0$ and $x=1$. Any time you convolve a function f with an impulse sequence, you can think of it as duplicating f for every impulse and summing the duplicates into one function, the result. Between $x=\frac{1}{4}$ and $x=\frac{3}{4}$, the sum is $x=\frac{4}{3}$.
Since in this case f has $r<1$, you need only convolve it with two impulses to discern its behavior. If you were to convolve it with c, the result would be a square wave that looks like the above example.
Answer: Not ripple free.
(b) A tent of radius 1

You could answer immediately by recalling that convolution with $f_{\text {tent }, 1}$ is equivalent to linear interpolation, and interpolating linearly between identically valued samples produces a constant function. But here's $f_{\text {tent }, 1}$, convolved with two impulses again, for illustration.

Answer: Ripple free.
(c) A tent of radius $\frac{3}{4}$

Answer: Not ripple free.
2. Prove any ripple free filter is normalized.

We have a mathematical definition of "ripple free" from the homework assignment, illustrated nicely by figure 4.27 on page 92 of the textbook:

$$
\begin{equation*}
\sum_{i} f(x-i)=1 \quad \forall x \tag{1}
\end{equation*}
$$

Notice that the infinite sum is equivalent to $(c \star f)$. The following is a plot of $f(x+1)+$ $f(x)+f(x-1)+f(x-2)$, which is a few terms of the infinite sum in (1). On the interval $[0,1]$, several (we don't necessarily know how many) filter instances overlap.

From (1), we have:

$$
\begin{aligned}
\int_{0}^{1} \sum_{i} f(x-i) d x & =\int_{0}^{1} 1 d x=1 \\
& =\sum_{i} \int_{0}^{1} f(x-i) d x=1
\end{aligned}
$$

Establishing that this sum of integrals is 1 suggests that on every 1 -unit-wide interval, there is a total of 1 in filter weight. If you look at the tent filter, for example, you can convince yourself that the original filter can be reassembled from the chunks in a 1 -unit-wide interval. So in some sense, since every integer position has a filter instance centered on it, and every integer position corresponds to 1 unit of filter weight, then each filter instance must be "worth" exactly 1 in filter weight, meaning it is normalized. We can formalize this idea by doing of change of variables in the above integral (where $y=x-i$):

$$
\begin{aligned}
& =\sum_{i} \int_{-i}^{-i+1} f(y) d y=1 \\
& =\int_{-\infty}^{\infty} f(y) d y=1
\end{aligned}
$$

Beginning from the fact that f is ripple free, we have shown that f must be normalized.

Alternatively, you can directly show that a filter is normalized under the assumption that it is
ripple free.

$$
\int_{-\infty}^{\infty} f(x) d x=\sum_{i} \int_{i}^{i+1} f(x) d x
$$

Let $x=x^{\prime}+i$

$$
\begin{aligned}
& =\sum_{i} \int_{0}^{1} f\left(x^{\prime}+i\right) d x^{\prime} \\
& =\int_{0}^{1} \sum_{i} f\left(x^{\prime}+i\right) d x^{\prime}
\end{aligned}
$$

Let $j=-i$

$$
\begin{aligned}
& =\int_{0}^{1} \sum_{j} f\left(x^{\prime}-j\right) d x^{\prime} \\
& =\int_{0}^{1} 1 d x^{\prime} \\
& =1
\end{aligned}
$$

The two changes of variable required seem rather mysterious but arise because the ripple free condition is a sum over all integers. This gives considerable freedom in its exact expression and many similar expressions only reorder the terms in the sum. For example:

$$
\sum_{i} f(x-i)=\sum_{i} f(x+i)
$$

since, in both cases for any integer j, both j and $-j$ are included in the sum. The change of signs simply switches whether the positive terms are computed first or second.
3. Prove that a ripple free filter f has the property $\hat{f}(k)=0$ for all integers $k, k \neq 0$

Since we assume f is an even function, its Fourier transform is given by

$$
\hat{f}(k)=\int_{-\infty}^{\infty} f(x) \cos (2 \pi k x) d x
$$

Rather than directly compute the value of $\hat{f}(k)$, let's compute the value of $(\widehat{f \star c})(k)$. If we do find it is zero at integer k , then f must have removed all nonzero integer frequencies, which would imply $\hat{f}(k)$ is zero. Let's formalize argument:

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left(\sum_{i} f(x-i)\right) \cos (2 \pi k x) d x & =\int_{-\infty}^{\infty} \cos (2 \pi k x) d x=0(\text { when } k \neq 0) \\
& =\sum_{i} \int_{-\infty}^{\infty} f(x-i) \cos (2 \pi k x) d x=0
\end{aligned}
$$

$f(x-i)$ appears in the integral, but we'd really like to look at $f(x)$, so let's do another change
of variable, where $y=x-i$.

$$
\begin{aligned}
\sum_{i} \int_{-\infty}^{\infty} f(x-i) \cos (2 \pi k x) d x & =\sum_{i} \int_{-\infty}^{\infty} f(y) \cos (2 \pi k(y+i)) d y=0 \\
& =\sum_{i} \int_{-\infty}^{\infty} f(y) \cos (2 \pi k y) d y=0 \text { since } \cos \text { is } 2 \pi \text { periodic } \\
& =\sum_{i} \hat{f}(k)=0 \\
& =\hat{f}(k)=0
\end{aligned}
$$

Beginning from the fact that f is ripple free, we have shown that $\hat{f}(k)=0$ for nonzero integer k.

Alternatively you could have done this similar to the previous question.

$$
\begin{aligned}
\hat{f}(k) & =\int_{-\infty}^{\infty} f(x) \cos (2 \pi k x) d x \\
& =\sum_{i} \int_{i}^{i+1} f(x) \cos (2 \pi k x) d x
\end{aligned}
$$

Let $x=x^{\prime}+i$

$$
\begin{aligned}
& =\sum_{i} \int_{0}^{1} f\left(x^{\prime}+i\right) \cos \left(2 \pi k\left(x^{\prime}+i\right)\right) d x^{\prime} \\
& \left.=\sum_{i} \int_{0}^{1} f\left(x^{\prime}+i\right) \cos \left(2 \pi k x^{\prime}+2 \pi k i\right)\right) d x^{\prime}
\end{aligned}
$$

Here since k and i are integers, the second term in the cosine is a shift of some exact number of periods. This will not change the value of the integral over one period and can be discarded.

$$
\begin{aligned}
& \left.=\sum_{i} \int_{0}^{1} f\left(x^{\prime}+i\right) \cos \left(2 \pi k x^{\prime}\right)\right) d x^{\prime} \\
& \left.=\int_{0}^{1} \sum_{i} f\left(x^{\prime}+i\right) \cos \left(2 \pi k x^{\prime}\right)\right) d x^{\prime} \\
& \left.=\int_{0}^{1} 1 \cdot \cos \left(2 \pi k x^{\prime}\right)\right) d x^{\prime} \\
& =\frac{\sin (2 \pi k)}{2 \pi k}
\end{aligned}
$$

This latter expression is zero for all integer values of $k \neq 0$.
4. Write an expression for a renormalized version g of a filter f.

Note that the denominator, the sum of the filter weights used, varies with position x.

$$
g(x)=\frac{f(x)}{\sum_{i} f(x-i)}
$$

5. Plot renormalized versions of the following filters:
(a) A box of radius $\frac{3}{4}$

(b) A tent of radius $\frac{6}{5}$

(c) A Gaussian with standard deviation 1

6. For a renormalized box of radius r, with $\frac{1}{2}<r<1$, derive the Fourier transform, and plot your result for $r=\frac{3}{4}$.
Call the renormalized box $g(x)$. Referring to the plot in question 4 of a renormalized $f_{b o x, \frac{3}{4}}$, you can get an idea of how the renormalized $f_{b o x, r}$ would look. It is essentially the sum of two $\frac{1}{2}$ height box functions, one of radius $(1-r)$ and one of radius r. So we can compute \hat{g} as the sum of the Fourier transforms of two boxes:

$$
\begin{aligned}
\hat{g}(u) & =\int_{-(1-r)}^{1-r} \frac{1}{2} \cos (2 \pi u x) d x+\int_{-r}^{r} \frac{1}{2} \cos (2 \pi u x) d x \\
& =2 \int_{0}^{1-r} \frac{1}{2} \cos (2 \pi u x) d x+2 \int_{0}^{r} \frac{1}{2} \cos (2 \pi u x) d x \\
& =\int_{0}^{1-r} \cos (2 \pi u x) d x+\int_{0}^{r} \cos (2 \pi u x) d x \\
& =\left[\frac{\sin (2 \pi u x)}{2 \pi u}\right]_{0}^{1-r}+\left[\frac{\sin (2 \pi u x)}{2 \pi u}\right]_{0}^{r} \\
& =\frac{\sin (2 \pi(1-r) u)}{2 \pi u}+\frac{\sin (2 \pi r u)}{2 \pi u}
\end{aligned}
$$

Alternatively, you could use the given expression for $\widehat{f_{b o x, r}}$ and the rescaling property of the Fourier transform,

$$
\widehat{f(a u)}=\frac{1}{|a|} \hat{f}\left(\frac{u}{a}\right)
$$

to compute the Fourier transform of a sum of rescaled $f_{b o x, 1}$ functions without doing any integrals:

$$
\begin{aligned}
g(u) & =f_{\text {box }, 1}\left(\frac{1}{(1-r)} x\right)+f_{\text {box }, 1}\left(\frac{1}{r} x\right) \\
\hat{g}(u) & =(1-r) \widehat{f_{b o x}, 1}((1-r) u)+r \widehat{f_{b o x, 1}}(r u) \\
& =(1-r) \frac{\sin (2 \pi(1-r) u)}{2 \pi(1-r) u}+r \frac{\sin (2 \pi r u)}{2 \pi r u} \\
& =\frac{\sin (2 \pi(1-r) u)}{2 \pi u}+\frac{\sin (2 \pi r u)}{2 \pi u}
\end{aligned}
$$

