
CS 465 Homework 3
(revised September 18, 2005)

out: Friday 16 September 2005
due: Friday 23 September 2005

This homework involves computing some Fourier transforms, but we will only be working
with even functions (functions that are symmetric across zero, so thatf(x) = f(−x)).
For even functions, the Fourier transform can be simplified from the form given in the text
(Equation 4.7) because the complex part of the exponential cancels. So for the purposes of
this homework, the following equation is a definition of the Fourier transform:

f̂(u) =
∫ ∞

−∞
f(x) cos 2πux dx (1)

In general, for this whole homework feel free to assume that filters have finite support if it
makes the reasoning and notation easier.

Problem 1: Ripple and renormalization

Recall the ripple-free property for convolution filters that are used for reconstruction: to
be ripple free, a filter must produce a constant function when it is convolved with a con-
stant sequence. If we letc be the one-dimensional constant sequence[. . . , 1, 1, 1, . . .], the
requirement for a filterf is:

(c ? f)(x) = 1 ∀x

or ∑
i

c[i]f(x− i) = 1 ∀x

∑
i

f(x− i) = 1 ∀x (2)

1. Which of the following filters are ripple free? For those that are not, compute the
convolution withc at one point where the value is not 1.

(a) A box of radius3
4

(b) A tent of radius 1

(c) A tent of radius3
4

1
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2. Prove that any ripple-free filter is also a normalized filter (that is,
∫∞
−∞ f(x) dx = 1).

Hint: A good way to do this involves breaking the integral up into a sum of integrals
over the intervals from one integer to the next.

Looking at the same situation in frequency space, the ripple-free property is simply that the
filter exactly removes all nonzero multiples of the sample frequency. In our example the
sample frequency is 1, so this can be written as:

f̂(i) = 0 ∀ integersi 6= 0 (3)

3. Show that property (2) implies property (3). That is, start with the definition of the
Fourier transform and (2), then compute the value off̂ at all integer frequencies.

Given any filter, even one that is not normalized or ripple free, we can ensure that we
reconstruct constant functions properly by renormalizing the filter weights for every recon-
struction computation. That is, when we evaluate the reconstructed signal at a particular
point, we add up all the filter weights we used, then divide the result by that sum.

4. This renormalization process is exactly equivalent to convolution with a different
reconstruction filter. Write an expression for this filter.

5. Plot the renormalized filters that result from the following filters:

(a) A box of radius3
4

(b) A tent of radius6
5

(c) A Gaussian with standard deviation 1

We have said on occasion that the Fourier transform of a box filter issinc u = (sinπu)/(πu).
Here is a brief derivation of that result, starting with the definitions of the Fourier transform
(1) and the box filterfbox,r (page 89 in the text).

When we substitute the functionfbox,r into (1), the finite support of the box has the effect
of setting bounds on the integral. It can then be readily solved:

f̂box,r(u) =
∫ r

−r

1
2r

cos 2πux dx

=
1
2r

[
sin 2πux

2πu

]r

−r

=
sin 2πru

2πru

which reduces tosinc u whenr = 1
2 .

6. For a renormalized box of radiusr, with 1
2 < r < 1, derive the Fourier transform

using a similar approach. Plot your result forr = 3
4 .


