CS 465 Program 3: Pipeline

(revised October 3, 2005)

out: 3 October 2005
due: 18 October 2005

1 Introduction

In this assignment, you will implement several types of shading in a simple software graphics
pipeline. In terms of the graphics pipeline stages we discussed in lecture, we are giving you the
application and rasterizer stages of the pipeline, and your job is to implement the vertex and frag-
ment processing stages to achieve several different kinds of shading. This is very much like the task
you are faced with when using a modern programmable graphics processor such as the ones that
power current high-end PC graphics boards.

2 Principle of operation

As discussed in lecture, the graphics pipeline is a sequence of processing stages that efficiently
transforms a set of 3D primitives into a shaded rendering from a particular camera. The major
stages of the pipeline are:

e Application: holds the scene being rendered in some appropriate data structure, and sends a
series of primitives (only triangles, in our case) to the pipeline for rendering.

e Vertex Processing: transforms the primitives into screen space, optionally doing other pro-
cessing, such as lighting, along the way. In our pipeline this stage is known as “triangle
processing” because the only primitives are triangles.

e Rasterization: takes the screen-space triangles resulting from vertex processing and generates
a fragment for every pixel that’s covered by each triangle. Also interpolates parameter values,
such as colors, normals, and texture coordinates, given by the vertex processing stage to
create smoothly varying parameter values for the fragments. Depending on the design of the
rasterizer, it may clip the primitives to the view volume. Your simple rasterizer will not be
able to handle triangles that cross the view plane, so we have provided a Clipper which
runs just before the rasterization.

e Fragment processing: processes the fragments to determine the final color for each, to perform
z-buffering for hidden surface removal, and to write the results to the framebuffer.

e Display: displays the contents of the framebuffer where the user can see them.



CS 465—Pipeline 2

For each of rendering methods detailed below, you will implement a triangle processor and a frag-
ment processor as subclasses of the TriangleProcessor and FragmentProcessor base
classes. The triangle processor input is three vertices, colors, normals, and texture coordinates. It
returns a list of Vertexs to the pipeline. Each Vertex will contain a screen space vertex and
an attribute array containing its parameters. They are given to the rasterizer which produces frag-
ments whose data is interpolated from the vertex attributes. The fragment processor takes as input a
Fragment which contains an integer (xz, y) pixel coordinate and an attribute array, and after doing
the appropriate computations, it sets pixels in the FrameBuf fer as appropriate.

The attribute arrays are the means of communication between the vertex and fragment programs,
and the two stages need to agree on how many attributes there are and what they mean. When the
user chooses the two programs, the framework enforces agreement on the number of attributes, but
the semantics are up to you.

The pipeline contains three transformation matrices: the Modelview matrix, which is the product of
the modelling and viewing matrices we discussed in lecture, the Projection matrix, and the Viewport
matrix. You’ll use the Modelview matrix to transform the input triangle data in object space to
eye-space coordinates. An important feature of the pipeline is that it only allows rotations and
translations in the Modelview matrix. This means that you can transform normals using the same
matrix you use to transform vectors, a nice convenience.

Our software graphics pipeline is cannot match the performance of dedicated hardware; though
for small scenes, like those in this assignment, it can acheive interactive performance. However,
the time to render a frame is largely pixel bound meaning most of the time is spent in fragment
processing (which is also typical of hardware pipelines). You should take care to implement your
fragment programs as efficiently as possible. Make every statement count! In particular, your
performance will be seriously compromised if you allocate objects in the fragment program or to
use many calls to the Math library (which in Java is very inefficient).

3 Requirements

Implement vertex and fragment programs to provide the following kinds of shading with hidden
surface removal. Just to get you started, the framework comes with an implementation of constant
shading with no z-buffer.

1. Constant Shading: each triangle is shaded the color of a single vertex. To match the hard-
ware defaults, this is the third vertex. All other data, the colors, the normal, and the texture
coordinates, are ignored.

2. Textured Shading: each triangle is shaded with the color of a single vertex (third to match
hardware) multiplied by the current texture. The texture coordinates for each vertex are used
to index into the texture. The other colors and the normals are ignored.

3. Flat Shading: each triangle is rendered with a single color computed using the Blinn-Phong
lighting model with the color and normal of single (third) vertex. The other colors and nor-
mals and the texture coordinates are ignored.

4. Gouraud Shading: each triangle is rendered with colors interpolated from the vertices. The
color at each vertex is computed using the Blinn-Phong lighting model using the color and
normal of that vertex. The texture coordinates are ignored.



CS 465—Pipeline 3

5. Phong Shading: each triangle is rendered using the Blinn-Phong lighting model but the colors
and the normals interpolated from normals of the vertices and the model is calculated at each
fragment. The texture coordinates are ignored.

6. Textured Phong shading: each triangle is rendered using the Blinn-Phong lighting model with
the color from the current texture map and the normal interpolated from the normals of the
vertices. The vertex colors are ignored (unlike in the texture-modulated constant shading).

For this assignment, the Blinn-Phong lighting model is the same as the model used in the ray tracer-
ing assignment. The diffuse color comes from either the vertex colors or texture map. The specular
color, exponent and lighting direction are all constants stored statically in the Pipeline class.
Finally, you should use the infinite viewer approximation for the lighting direction. This means that
in eye coordinates the direction toward the eye is always +z.

4 Framework code

The framework is a simple graphics pipeline that is modelled on the way hardware graphics pipelines
work. For this assignment, you should not need to modify any code outside of the triangle and frag-
ment programs you will write. However, you will read or write data from several of the other
classes.

1. Pipeline coordinates the operation of the pipeline and provides the interface to the Scene
classes that draw the test scenes. It contains references to all the pipeline stages: the triangle
processor, the rasterizer, the fragment processor, and the framebuffer. It is here that you
will find the current transformations and the lighting parameters for the Phong model. The
renderTriangle () method ties everything together.

2. TriangleProcessor holds the code to perform triangle processing. Your triangle pro-
cessors will be sub-classes of this class. Your will have to write implementations of the
triangle () method in each sub-class. This method is called when rendering each triangle
and it takes four arrays as arguments, each of which should be three elements long: the three
vertex positions, the vertex colors, the vertex normals, and the texture coordinates. Not every
triangle processor will use all the arguments (in fact, none will use every single argument).

There are also two extra methods ina TriangleProcessor: updateLightModel and
updateTransforms. The first is called by the framework whenever the lighting param-
eters (light direction, intensity, etc) change. The second is called whenever the modelview,
projection, or viewport matrices change. These calls allow you to store the current transfor-
mation matrices or lighting parameters in your sub-classes to be used in later computations.

3. Clipper contains the algorithms for clipping before rasterization. The c1ip method is the
entry point, called by the pipeline for each triangle. It clips the triangle against the near plane,
which results in zero, one, or two triangles that need to be rasterized.

4. Rasterizer will contains the algorithm for rasterization. The rasterize method is the
entry point called by the pipeline for each clipped triangle. The rasterizer outputs a list of
fragments that are sent to the fragment processor.



CS 465—Pipeline 4

5. FragmentProcessor holds the code for fragment processing. You will implement sub-
classes of this class to perform fragment processing. The main function is fragment and is
called for every fragment (and therefore needs to be efficient). The arguments to fragment
are a Fragment and the Framebuffer. The fragment structure stores coordinates of
the pixel it addresses and the attribute values interpolated from the triangle vertices by the
rasterizer. When the fragment program is done processing the fragment, the resultant color
(if visible) should be set in the FrameBuffer.

FragmentProcessor also contains a method to update the lighting model just like the
TriangleProcessor class. Note that it does not need a method to update the transfor-
mations. Why?

6. FrameBuf fer stores the final image. It stores the color channels as a byte array (three bytes
per pixel) and the z buffer as a float array (one float per pixel). The fragment processor can
read the z buffer using the getZ () method, and it can write to all the channels using the
set () method. The image is drawn in PipeView.display () method.

7. javax.vecmath. « is Sun’s Java vector math library. It is external to your code and is
included in the vecmath.jar file in the framework zip. Most of the mathematics calls are
similar to the methods in Vector3 and Point3 from earlier assignments, but many are
slightly different. You should look over the API for vecmath at

http://Jjava.sun.com/products/java-media/3D/forDevelopers/J3D_1_3_API/j3dapi/index.html

8. Matrix4f (not to be confused with javax.vecmath.Matrix4f) is a very simpli-
fied 4x4 matrix class for this assignment. You will only need to use the *xMultiply and
xCompose operations. Texture handles texture objects. To look up the color at a partic-
ular texture coordinate, use the sample () method, which accepts a two-dimensional point
(u, v) in the unit square [0, 1] x [0, 1].

9. The classes Camera, Geometry, and Scene and its subclasses make up the application
code that feeds triangles into the pipeline. The different scenes are:

e “Triangle”: a scene with a single triangle. The color varies across its surface from full
red to full green to full blue at each vertex. The texture coordinates vary in a similar, but
not identical fashion.

e “Balls”: a scene consisting of two spheres with spherical normals. The texture coordi-
nates are the = and y coordinates of the vertex position.

e “Cube”: a scene consisting of a cube with faces of different colors. The texture coordi-
nates vary from (0,0) to (1, 1) across each face.

e “shipl.msh” and “ship2.msh”: triangle meshes that are read in from files. The stored
meshes have texture coordinates specific to textures that match the ship designs called
“shipl.png” and “ship2.png.”

e “Maze”: arandomly generated maze. This is the one model that’s meant to be used with
the “Flythrough” camera mode. The shaded modes don’t produce very nice looking
results with this scene the way the lights are set up; this is best viewed with the textured
constant shading mode.

To control the camera in the “Orbit Camera” mode, click and drag in the window to rotate the
model, and shift-click and drag to move the camera closer or farther away. In the “Flythrough”



CS 465—Pipeline 5

10.

mode, click and drag to rotate the camera in place, and shift-click and hold to move forward.
You can steer while moving forward by moving the mouse around.

MainFrame, GLView, and PipeView are concerned with the user interface. MainFrame
contains the main method of this assignment and will initialize the GUI. The program comes
up with a single window that shows you two viewports containing the same scene. The left
one is rendered by our software pipeline and the right one is rendered by OpenGL using your
PC’s graphics hardware. There are several drop down boxes across the bottom. The first
two let you choose the active triangle and fragment processor. The third one lets you choose
between several simple test scenes; the fourth one lets you choose among several textures;
and the last one lets you choose between two ways to control the camera.

The OpenGL viewport configures itself based on the classes that are selected in the first two
menus. Its behavior closely approximates what you should see in the software window (but
only for valid combinations of triangle and fragment processors). However, OpenGL does
not support normal interpolation (required for the Phong shading modes) without using pixe!
shaders that are very similar to what you are writing for the software pipeline. Unfortunately,
the standards for pixel shaders are hardware specific and we chose not to include them fearing
framework code that would crash on someone’s hardware. This means that for all the modes
but the Phong ones, your code should match the OpenGL window perfectly (watch that you
use the third vertex when applicable). In the Phong modes, the OpenGL window will continue
to use Gouraud shading which will look blocky compared to the smooth fragment shading
produced by your code.

Also included are several stub classes for the triangle and fragment shaders that you will need to
implement for this assignment. We expect that each of the shading modes described above will be
implemented by the following pairs of shading processors:

Constant shading: ConstColorTP and ColorZBufferFP
Textured constant shading: TexturedTP and TexturedFP
Flat shading: Flat ShadedTP and ColorZBufferFP
Gouraud shading: SmoothShadedTP and ColorZBufferFP
Phong shading: Fragment ShadedTP and PhongShadedFP

Textured Phong shading: TexturedFragment ShadedTP and TexturedPhongFP

S Setup

This project will make use of a few external libraries in addition to the framework code. We en-
courage you to try to setup and run the framework code early so that you can work out any dif-
fculties before the deadline approaches. This section will explain how to setup Eclipse to properly
compile and run the assignment. If you have not been using Eclipse for your programming, we



CS 465—Pipeline 6

strongly recommend that you do so for this assignment'. Its free and can be downloaded from
http://www.eclipse.org/.

5.1

5.2

Creating the project

. Unzip the framework bundle into the root directory of the Eclipse workspace. By default, this

is a directory called workspace under the Eclipse installation directory. This will create a
new directory called “PA3”.

Open Eclipse and select “File >New >Project”

. Select “Java Project”

. Name the project exactly “PA3” and click “Finish.” The project should now be created in

your workspace. The source code is all in a project sub-directory called src.

Creating Run profile

. Open MainFrame.java in the pipeline package.

Select “Run >Run...”

. Double click on the “Java Application” entry in the left hand box and a new Run configuration

is created automatically.

Select the “Arguments” tab on the right

. In the “VM arguments” box enter exactly this string: -Djava.library.path="./dlls/”” including

the quotes.

. Click “Run”. The project should now execute and the main GUI window should open. This

run configuration is saved and you can use it to run to the program from now on.

6 Handing In

Hand in in the usual way via CMS. Include a .zip file of the entire pipeline package tree. If you
did extra credit, include any additional data files that are needed.

7 Extra Credit

All kinds of clever pipeline rendering tricks are accessible directly from this framework. Some
examples:

'If you wish to use another IDE or environment, you are free to do so if you understand how to correctly configure the
external libraries. The course staff will try to help you if they can, but you will ultimately be responsible for configuring
environments other than Eclipse.



CS 465—Pipeline 7

1. Reflections from planar surfaces using two-pass rendering. You can simulate mirror-like
reflections in a flat surface by making a rendering of your scene from a viewpoint reflected
across the plane, reading that image back from the framebuffer, and then using it as a texture
to draw the plane from the normal viewpoint. Foley et al. has a discussion of this technique.

2. Environment mapping. Read up on environment mapping in Shirley or Foley et al., then
implement a fragment processor that renders a shiny metal material by generating texture
coordinates to index into a cube-map. You can find some cube-map images at
http://www.debevec.org/Probes/.

3. Efficient rasterization. Rather than going over the entire bounding box of a triangle, there are
far more efficient ways to rasterize triangles. The resulting code is often messy though, so
make sure you document what you’re doing as well as any sources for the algorithm you’re
using.

If you do extra credit, you will probably want to extend or modify the scenes we have provided, in
order to demonstrate your extra feature.

We recommend talking to us about your proposed extra credit first so we can steer you towards
interesting mappings and make sure we agree that it would be worth extra credit.

Let us re-emphasize that, as always, extra credit is only for programs that correctly implement the
basic requirements.



