Combining images

• Often useful combine elements of several images
• Trivial example: video crossfade
 – smooth transition from one scene to another

 \[
 \begin{align*}
 r_C &= t_A + (1-t)r_B \\
 g_C &= t_g A + (1-t)g_B \\
 b_C &= t_B A + (1-t)b_B
 \end{align*}
 \]

 – note: weights sum to 1.0
 • no unexpected brightening or darkening
 • no out-of-range results
 – this is linear interpolation

Combining images

• Often useful combine elements of several images
• Trivial example: video crossfade
 – smooth transition from one scene to another

 \[
 \begin{align*}
 r_C &= t_A + (1-t)r_B \\
 g_C &= t_g A + (1-t)g_B \\
 b_C &= t_B A + (1-t)b_B
 \end{align*}
 \]

 – note: weights sum to 1.0
 • no unexpected brightening or darkening
 • no out-of-range results
 – this is linear interpolation
Foreground and background

- In many cases just adding is not enough
- Example: compositing in film production
 - shoot foreground and background separately
 - also include CG elements

Compositing example: film effects

Foreground and background

- How we compute new image varies with position
 - use background

- Therefore, need to store some kind of tag to say what parts of the image are of interest

Binary image mask

- First idea: store one bit per pixel
 - answers question “is this pixel part of the foreground?”

- does not work well near edges
Binary image mask

- First idea: store one bit per pixel
 - answers question “is this pixel part of the foreground?”
 - does not work well near edges

Partial pixel coverage

- The problem: pixels near boundary are not strictly foreground or background
 - how to represent this simply?
 - interpolate boundary pixels between the two colors

Alpha compositing

- Formalized in 1984 by Porter & Duff
 - used in essentially identical form since
- Store fraction of pixel covered, called α
 - nice clean implementation: 8 more bits makes 32
 - 2 multiplies + 1 add per pixel for compositing

Alpha compositing—example

\[
\begin{align*}
C &= A \text{ over } B \\
r_C &= \alpha r_A + (1 - \alpha) r_B \\
g_C &= \alpha g_A + (1 - \alpha) g_B \\
b_C &= \alpha b_A + (1 - \alpha) b_B
\end{align*}
\]
An optimization

- Compositing equation again

 \[c_C = a_A c_A + (1 - a_A) c_B \]

- Note \(c_A \) appears only in the product \(a_A c_A \)
 - so why not do the multiplication ahead of time?

- Leads to premultiplied alpha:
 - store pixel value \((r', g', b', \alpha)\) where \(c' = \alpha c \)
 - \(C = A \) over \(B \) becomes
 \[c'_C = c'_A + (1 - a_A)c'_B \]
 - this turns out to be more than an optimization…
 - hint: so far the background has been opaque!

Compositing composites

- so far have only considered single fg, over single bg.
- in real applications we have \(n \) layers
 - Titanic example
 - compositing foregrounds to create new foregrounds
 - what to do with \(\alpha \)?
 - desirable property: associativity

\[
A \over (B \over C) = (A \over B) \over C
\]

- to make this work we need to be careful about how \(\alpha \) is computed

Compositing composites

- Now some pixels have fractional coverage in more than one layer

\[
c_D = a_A c_A + (1 - a_A) [a_B c_B + (1 - a_B) c_C]
\]

- in \(D = A \) over \((B \) over \(C) \) what will be the result?

\[
c'_D = c'_A + (1 - a_A)[c'_B + (1 - a_B)c'_C]
\]

Compositing composites

- Now some pixels have fractional coverage in more than one layer

- in \(D = A \) over \((B \) over \(C) \) what will be the result?

\[
c_D = a_A c_A + (1 - a_A) [a_B c_B + (1 - a_B) c_C]
\]

- What about just \(C = A \) over \(B \) (with \(B \) transparent)?

\[
\alpha_C = a_A + (1 - a_A) \alpha_B
\]

looks just like blending colors, and it leads to associativity.
Independent coverage assumption

- Why is it reasonable to blend α like a color?
- Simplifying assumption: covered areas are independent
 - that is, uncorrelated in the statistical sense

\[
\begin{array}{c|c}
\text{description} & \text{area} \\
A \cap B & (1-\sigma_A)(1-\sigma_B) \\
A \cap \bar{B} & \sigma_A(1-\sigma_B) \\
\bar{A} \cap B & (1-\sigma_A)\sigma_B \\
\bar{A} \cap \bar{B} & \sigma_A\sigma_B \\
\end{array}
\]

- This will cause artifacts
 - but we'll carry on anyway because it is simple and usually works…

Alpha compositing—failures

- positive correlation: too much foreground
- negative correlation: too little foreground

Other compositing operations

- Generalized form of compositing equation:
 \[
 \alpha C = A \text{ op } B \\
 c = F_Aa + F_Bb \\
 \]

\[
\begin{array}{c|c|c}
\text{A or 0} & \text{A or B or 0} \\
\text{0} & \text{B or 0} \\
\end{array}
\]

\[1 \times 2 \times 3 \times 2 = 12\text{ reasonable choices}\]