CS465: Computer Graphics I

Professor: Steve Marschner

Introduction

Computer graphics: The study of creating, manipulating, and using visual images in the computer.

Problems in graphics

- 2D imaging
 - compositing and layering
 - digital filtering
 - color transformations
- 2D drawing
 - illustration, drafting
 - text, GUIs

Problems in graphics CONT’D

- 3D modeling
 - representing 3D shapes
 - polygons, curved surfaces, …
 - procedural modeling
Problems in graphics cont’d

- **3D modeling**
 - representing 3D shapes
 - polygons, curved surfaces, …
 - procedural modeling

- **DIFFERENTIAL GEOMETRY**
 - Hands—Qwrf

- **GRAMMARS**

Problems in graphics cont’d

- **3D rendering**
 - 2D views of 3D geometry
 - projection and perspective
 - removing hidden surfaces
 - lighting simulation

Problems in graphics cont’d

- **3D rendering**
 - 2D views of 3D geometry
 - projection and perspective
 - removing hidden surfaces
 - lighting simulation

Problems in graphics cont’d

- **Integration**
 - Hands—Qwrf

Problems in graphics cont’d

- **Interaction**
 - 2D graphical user interfaces
 - 3D modeling interfaces
 - virtual reality
Problems in graphics cont'd

- Interaction
 - 2D graphical user interfaces
 - 3D modeling interfaces
 - virtual reality

Problems in graphics cont'd

- Animation
 - keyframe animation
 - physical simulation

Problems in graphics cont'd

- Animation
 - keyframe animation
 - physical simulation

Graphics Applications

- Entertainment
 - film production
 - film effects
 - games
Graphics Applications

- Entertainment
 - film production
 - film effects
 - games
- Science and engineering
 - computer-aided design
 - scientific visualization
- Graphic Arts
- Fine Arts

Graphics Applications

- Entertainment
 - film production
 - film effects
 - games
- Science and engineering
 - computer-aided design
 - scientific visualization
- Graphic Arts

In this course

- You will:
 - explore fundamental ideas
 - learn math essential to graphics
 - implement key algorithms
 - write cool programs
- You will not:
 - learn OpenGL or DirectX
 (though you will understand basically how they work)
 - write big programs

Mechanics
Topics

- Images and image processing
- Mathematical background
- Rendering 3D scenes
- Geometric transformations
- The graphics pipeline
- Modeling in 2D and 3D
- Color science

Images

- What is an image?
- Compositing
- Resampling

Mathematical background

- Review of bits of:
 - linear algebra
 - geometry
 - calculus
 - differential geometry

Rendering

- ray tracing
- shading & shadows
- transparency
- texture mapping

Geometric transformations

- affine transforms
- perspective transforms
- viewing

rotate, then translate

translate, then rotate
Graphics pipeline

• rasterization
• interpolation
• z-buffer
• vertex and fragment ops

Modeling

• splines
• parametric surfaces
• triangle meshes