Subdivision overview

CS4620 Lecture 16
Introduction: corner cutting

• Piecewise linear curve too jagged for you? Lop off the corners!
 – results in a curve with twice as many corners

• Still too jagged? Cut off the new corners
 – process converges to a smooth curve
 – Chaikin’s algorithm

http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm
Introduction: corner cutting

- Piecewise linear curve too jagged for you? Lop off the corners!
 - results in a curve with twice as many corners
- Still too jagged? Cut off the new corners
 - process converges to a smooth curve
 - Chaikin’s algorithm

http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm
Introduction: corner cutting

- Piecewise linear curve too jagged for you? Lop off the corners!
 - results in a curve with twice as many corners
- Still too jagged? Cut off the new corners
 - process converges to a smooth curve
 - Chaikin’s algorithm

http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm
Introduction: corner cutting

• Piecewise linear curve too jagged for you? Lop off the corners!
 – results in a curve with twice as many corners

• Still too jagged? Cut off the new corners
 – process converges to a smooth curve
 – Chaikin’s algorithm

http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm
Introduction: corner cutting

• Piecewise linear curve too jagged for you? Lop off the corners!
 – results in a curve with twice as many corners

• Still too jagged? Cut off the new corners
 – process converges to a smooth curve
 – Chaikin’s algorithm

http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm
Corner cutting in equations

• New points are linear combinations of old ones
• Different treatment for odd-numbered and even-numbered points.

\[p_{2i}^k = \left(3p_i^{k-1} + p_{i+1}^{k-1}\right)/4 \]
\[p_{2i+1}^k = \left(p_i^{k-1} + 3p_{i+1}^{k-1}\right)/4 \]
Spline-splitting math for B-splines

- Can use spline-matrix math from previous lecture to split a B-spline segment in two at $s = t = 0.5$.
- Result is especially nice because the rules for adjacent segments agree (not true for all splines).

\[
S_L = \begin{bmatrix} s^3 & s^2 & s & 1 \\ \end{bmatrix} \quad \begin{align*}
PL &= M^{-1} S_L M P \\
PR &= M^{-1} S_R M P
\end{align*}
\]

\[
S_R = \begin{bmatrix} s^3 & 3s^2(1-s) & 3s(1-s)^2 & (1-s)^3 \\ s^2 & 2s(1-s) & (1-s)^2 & (1-s) \\ s & s & s & s \\ 1 & 1 & 1 & 1 \\ \end{bmatrix}
\]

\[
P_L = \begin{bmatrix} 4 & 4 & 0 & 0 \\ 1 & 6 & 1 & 0 \\ 0 & 4 & 4 & 0 \\ 0 & 1 & 6 & 1 \\ \end{bmatrix}
\]

\[
P_R = \begin{bmatrix} 1 & 6 & 1 & 0 \\ 0 & 4 & 4 & 0 \\ 0 & 1 & 6 & 1 \\ 0 & 0 & 4 & 4 \\ \end{bmatrix}
\]
Subdivision for B-splines

- Control vertices of refined spline are linear combinations of the c.v.s of the coarse spline

![Diagram](image-url)
Drawing a picture of the rule

- Conventionally illustrate subdivision rules as a “mask” that you match against the neighborhood
 - often implied denominator = sum of weights

```
1 6 1

even
B-spline

odd

4 4

even
corner-cutting

3 1

odd

1 3
```
Cubic B-Spline

\[
\begin{align*}
\frac{1}{8} & \quad \frac{6}{8} & \quad \frac{1}{8} \\
\frac{4}{8} & \quad \frac{4}{8}
\end{align*}
\]

even

odd

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

\[\frac{4}{8} \quad \frac{4}{8} \quad \frac{1}{8} \quad \frac{6}{8} \quad \frac{1}{8} \]

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

\[
\begin{align*}
\frac{4}{8} & \quad \frac{4}{8} \\
\text{odd} & \quad \text{even}
\end{align*}
\]

[Stanford CS468 Fall 2010 slides]
Subdivision curves

- Key idea: let go of the polynomials as the definition of the curve, and let the refinement rule define the curve.
- Curve is defined as the *limit of a refinement process*:
 - properties of curve depend on the rules
 - some rules make polynomial curves, some don’t
 - complexity shifts from implementations to proofs
Playing with the rules

• Once a curve is defined using subdivision we can customize its behavior by making exceptions to the rules.
• Example: handle endpoints by simply using the mask \([1]\) at that point.
• Resulting curve is a uniform B-spline in the middle, but near the exceptional points it is something different.
 – it might not be a polynomial
 – but it is still linear, still has basis functions
 – the three coordinates of a surface point are still separate
From curves to surfaces

Subdivision defines a smooth curve or surface as the limit of a sequence of successive refinements.
Figure 2.2: Example of subdivision for a surface, showing 3 successive levels of refinement. On the left an initial triangular mesh approximating the surface. Each triangle is split into 4 according to a particular subdivision rule (middle). On the right the mesh is subdivided in this fashion once again.
Generalizing from curves to surfaces

• Two parts to subdivision process
• Subdividing the mesh (computing new topology)
 – For curves: replace every segment with two segments
 – For surfaces: replace every face with some new faces
• Positioning the vertices (computing new geometry)
 – For curves: two rules (one for odd vertices, one for even)
 • New vertex’s position is a weighted average of positions of old vertices that are nearby along the sequence
 – For surfaces: two kinds of rules (still called odd and even)
 • New vertex’s position is a weighted average of positions of old vertices that are nearby in the mesh
Subdivision of meshes

- Quadrilaterals
 - Catmull-Clark 1978
- Triangles
 - Loop 1987

Face split for quads

Face split for triangles
Loop regular rules
Catmull-Clark regular rules
Creases

• With splines, make creases by turning off continuity constraints
• With subdivision surfaces, make creases by marking edges “sharp”
 – use different rules for vertices with sharp edges
 – these rules produce B-splines that depend only on vertices along crease

![Crease and boundary diagram]

a. Masks for odd vertices
b. Masks for even vertices
Boundaries

- At boundaries the masks do not work
 - mesh is not manifold; edges do not have two triangles
- Solution: same as crease
 - shape of boundary is controlled only by vertices along boundary

![Diagram of Crease and boundary with masks](image.png)

- a. Masks for odd vertices
- b. Masks for even vertices
Extraordinary vertices

- Vertices that don’t have the “standard” valence
- Unavoidable for most topologies
- Difference from splines
 - treatment of extraordinary vertices is really the only way subdivision surfaces are different from spline patches
Full Loop rules (triangle mesh)

\[\beta = \frac{5}{8} - \frac{(3 + 2 \cos(2\pi/n))^2}{64} \]

a. Masks for odd vertices

b. Masks for even vertices
Full Catmull-Clark rules (quad mesh)

Mask for a face vertex

\[
\begin{array}{ccc}
\frac{1}{4} & \frac{1}{4} & \\
\frac{1}{4} & \frac{1}{4} & \\
\end{array}
\]

Mask for an edge vertex

\[
\begin{array}{ccc}
\frac{1}{16} & \frac{1}{16} & \\
\frac{3}{8} & \frac{3}{8} & \\
\frac{1}{16} & \frac{1}{16} & \\
\end{array}
\]

Mask for a boundary odd vertex

\[
\begin{array}{ccc}
\frac{1}{8} & \frac{1}{8} & \\
\frac{1}{2} & \frac{1}{2} & \\
\end{array}
\]

Interior

\[
\begin{array}{ccc}
\frac{\beta}{k} & \frac{\beta}{k} & \\
\frac{\gamma}{k} & \frac{\gamma}{k} & \\
1-\beta-\gamma & \\
\end{array}
\]

\[\beta = \frac{3}{2k}; \gamma = \frac{1}{4k}\]

Crease and boundary

\[
\begin{array}{ccc}
\frac{1}{8} & \frac{3}{4} & \frac{1}{8} & \\
\end{array}
\]

a. Masks for odd vertices
b. Mask for even vertices
Loop Subdivision Example

control polyhedron
Loop Subdivision Example

refined control polyhedron
Loop Subdivision Example

odd subdivision mask
Loop Subdivision Example

subdivision level 1
Loop Subdivision Example

even subdivision mask
(ordinary vertex)
Loop Subdivision Example

subdivision level 1
Loop Subdivision Example

even subdivision mask
(extraordinary vertex)
Loop Subdivision Example

subdivision level 1
Loop Subdivision Example

subdivision level 1
Loop Subdivision Example

subdivision level 2
Loop Subdivision Example

subdivision level 3
Loop Subdivision Example

subdivision level 4
Loop Subdivision Example

limit surface
Relationship to splines

• In regular regions, behavior is identical
• At extraordinary vertices, achieve C^1
 – near extraordinary, different from splines
• Linear everywhere
 – mapping from parameter space to 3D is a linear combination of the control points
 – “emergent” basis functions per control point
 • match the splines in regular regions
 • “custom” basis functions around extraordinary vertices
Loop vs. Catmull-Clark

Loop

Catmull-Clark

[Schröder & Zorin SIGGRAPH 2000 course 23]
Loop vs. Catmull-Clark
Loop vs. Catmull-Clark

Loop
(after splitting faces)

Catmull-Clark
Loop with creases

(a-d) Loop's subdivision scheme: control mesh, meshes after 1 and 2 subdivision steps, and smooth limit surface

(e-h) Our piecewise smooth subdivision scheme: tagged control mesh, meshes after 1 and 2 subdivision steps, and piecewise smooth limit surface
Catmull-Clark with creases

[DeRose et al. SIGGRAPH 1998]
Variable sharpness creases

- Idea: subdivide for a few levels using the crease rules, then proceed with the normal smooth rules.
- Result: a soft crease that gets sharper as we increase the number of levels of sharp subdivision steps

sharpness 0 sharpness 1 sharpness 2 sharpness 3
Pixar short film to test subdivision in production
 - Catmull-Clark (quad mesh) surfaces
 - complex geometry
 - extensive use of creases
 - subdivision surfaces to support cloth dynamics