Triangle meshes I
CS4620/21 late policy

• **We use slip days**

• **You have 7 slip days for 4620, 7 separate ones for 4621**
 – e.g. you could turn in Ray 1 4 days late and Splines 3 days late. You are out of slip days for further 4620 assignments, but you could still turn in one 4621 assignment 7 days late

• **Accounting is separate per individual**
 – so it’s possible for you to have slip days left but your partner not to

• **Each late day beyond 7 incurs a 10 point late penalty**
 – i.e. project earns 93/100, is 2 days late, receives 73/100

• **Regardless of late penalties, assignments can’t be turned in more than 7 days late**

• **No slip days for 4621 final project**
spheres

approximate sphere

Andrzej Barabasz

Rineau & Yvinec
CGAL manual
finite element analysis
A small triangle mesh

12 triangles, 8 vertices
A large mesh

10 million triangles from a high-resolution 3D scan
about a trillion-triangle worldwide model from semi-automatically processed satellite, aerial, and street photography
Triangles

• Defined by three vertices
• Lives in the plane containing those vertices
• Vector normal to plane is the triangle’s normal
• Conventions (for this class, not everyone agrees):
 – vertices are counter-clockwise as seen from the “outside” or “front”
 – surface normal points towards the outside (“outward facing normals”)
Triangle meshes

- A bunch of triangles in 3D space that are connected together to form a surface

- Geometrically, a mesh is a \textit{piecewise planar} surface
 - almost everywhere, it is planar
 - exceptions are at the edges where triangles join

- Often, it’s a piecewise planar approximation of a smooth surface
 - in this case the creases between triangles are artifacts—we don’t want to see them
Representation of triangle meshes

- **Compactness**
- **Efficiency for rendering**
 - enumerate all triangles as triples of 3D points
- **Efficiency of queries**
 - all vertices of a triangle
 - all triangles around a vertex
 - neighboring triangles of a triangle
 - (need depends on application)
 - finding triangle strips
 - computing subdivision surfaces
 - mesh editing
Representations for triangle meshes

- **Separate triangles**
- **Indexed triangle set**
 - shared vertices
- **Triangle strips and triangle fans**
 - compression schemes for fast transmission
- **Triangle-neighbor data structure**
 - supports adjacency queries
- **Winged-edge data structure**
 - supports general polygon meshes

important for first assignment
Separate triangles

<table>
<thead>
<tr>
<th>tris[0]</th>
<th>[0]</th>
<th>[1]</th>
<th>[2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₀, y₀, z₀</td>
<td>x₂, y₂, z₂</td>
<td>x₁, y₁, z₁</td>
<td></td>
</tr>
<tr>
<td>x₀, y₀, z₀</td>
<td>x₃, y₃, z₃</td>
<td>x₂, y₂, z₂</td>
<td></td>
</tr>
<tr>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td></td>
</tr>
</tbody>
</table>

\((x₀, y₀, z₀) \)\n\(T₀ \)
\((x₁, y₁, z₁) \)
\((x₂, y₂, z₂) \)
\((x₃, y₃, z₃) \)
Separate triangles

- **array of triples of points**
 - float$[nT][3][3]$: about 72 bytes per vertex
 - 2 triangles per vertex (on average)
 - 3 vertices per triangle
 - 3 coordinates per vertex
 - 4 bytes per coordinate (float)

- **various problems**
 - wastes space (each vertex stored 6 times)
 - cracks due to roundoff
 - difficulty of finding neighbors at all
Indexed triangle set

- **Store each vertex once**
- **Each triangle points to its three vertices**

```cpp
Triangle {
    Vertex vertex[3];
}

Vertex {
    float position[3]; // or other data
}

// ... or ...

Mesh {
    float verts[nv][3]; // vertex positions (or other data)
    int tInd[nt][3]; // vertex indices
}
```
Indexed triangle set

verts[0]	x₀, y₀, z₀
verts[1]	x₁, y₁, z₁
	x₂, y₂, z₂
	x₃, y₃, z₃
	⋮

tInd[0]	0, 2, 1
tInd[1]	0, 3, 2
	⋮
Estimating storage space

- $n_T = \#\text{tris}; \ n_V = \#\text{verts}; \ n_E = \#\text{edges}$
- Rule of thumb: $n_T:n_E:n_V$ is about 2:3:1
Indexed triangle set

- **array of vertex positions**
 - float[\(n_V\)][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- **array of triples of indices (per triangle)**
 - int[\(n_T\)][3]: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle

- **total storage**: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined
Data on meshes

- Often need to store additional information besides just the geometry
- Can store additional data at faces, vertices, or edges
- Examples
 - colors stored on faces, for faceted objects
 - information about sharp creases stored at edges
 - any quantity that varies continuously (without sudden changes, or discontinuities) gets stored at vertices
Key types of vertex data

- **Surface normals**
 - when a mesh is approximating a curved surface, store normals at vertices

- **Surface parameterizations**
 - providing a 2D coordinate system on the surface

- **Positions**
 - at some level this is just another piece of data
 - position varies continuously between vertices
Differential geometry 101

- **Tangent plane**
 - at a point on a smooth surface in 3D, there is a unique plane tangent to the surface, called the *tangent plane*

- **Normal vector**
 - vector perpendicular to a surface (that is, to the tangent plane)
 - only unique for smooth surfaces (not at corners, edges)
Surface parameterization

- A surface in 3D is a two-dimensional thing
- Sometimes we need 2D coordinates for points on the surface
- Defining these coordinates is parameterizing the surface
- Examples:
 - cartesian coordinates on a rectangle (or other planar shape)
 - cylindrical coordinates (θ, y) on a cylinder
 - latitude and longitude on the Earth’s surface
 - spherical coordinates (θ, ϕ) on a sphere
- **Spoiler alert:**
 - in graphics, parameterizations are most often used for texture mapping.
 - therefore many systems call the parameters “texture coordinates.”
Example: unit sphere

- **position:**

 \[
 \begin{align*}
 x &= \cos \theta \sin \phi \\
 y &= \sin \theta \\
 z &= \cos \theta \cos \phi
 \end{align*}
 \]

- **normal is position**
 (easy!)

- **texture coordinates**

 \[
 \begin{align*}
 u &= \frac{\theta}{\pi} + \frac{1}{2} \\
 v &= \frac{\phi}{2\pi}
 \end{align*}
 \]
How to think about vertex normals

• **Piecewise planar approximation converges pretty quickly to the smooth geometry as the number of triangles increases**
 – for mathematicians: error is $O(h^2)$

• **But the surface normals don’t converge so well**
 – normal is constant over each triangle, with discontinuous jumps across edges
 – for mathematicians: error is only $O(h)$

• **Better: store the “real” normal at each vertex, and interpolate to get normals that vary gradually across triangles**
Interpolated normals—2D example

- Approximating circle with increasingly many segments
- Max error in position error drops by factor of 4 at each step
- Max error in normal only drops by factor of 2
Parameterizing a single triangle

- **Triangles**
 - specify \((u,v)\) for each vertex
 - define \((u,v)\) for interior by linear interpolation
Validity of triangle meshes

• in many cases we care about the mesh being able to bound a region of space nicely

• in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)

• two completely separate issues:
 – **mesh topology**: how the triangles are connected (ignoring the positions entirely)
 – **geometry**: where the triangles are in 3D space
Topology/geometry examples

- same geometry, different mesh topology:

- same mesh topology, different geometry:
Topological validity

- **strongest property: be a manifold**
 - this means that no points should be "special"
 - interior points are fine
 - edge points: each edge must have exactly 2 triangles
 - vertex points: each vertex must have one loop of triangles

- **slightly looser: manifold with boundary**
 - weaken rules to allow boundaries
Topological validity

- **Consistent orientation**
 - Which side is the “front” or “outside” of the surface and which is the “back” or “inside?”
 - rule: you are on the outside when you see the vertices in counter-clockwise order
 - in mesh, neighboring triangles should agree about which side is the front!
 - caution: not always possible

\[\text{OK} \quad \text{bad} \]
Geometric validity

• generally want non-self-intersecting surface
• hard to guarantee in general
 – because far-apart parts of mesh might intersect
Triangle strips

- Take advantage of the mesh property
 - each triangle is usually adjacent to the previous
 - let every vertex create a triangle by reusing the second and third vertices of the previous triangle
 - every sequence of three vertices produces a triangle (but not in the same order)
 - e.g., 0, 1, 2, 3, 4, 5, 6, 7, … leads to
 (0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), …
 - for long strips, this requires about one index per triangle
Triangle strips

\[
\begin{array}{c|c}
\text{verts[0]} & x_0, y_0, z_0 \\
\text{verts[1]} & x_1, y_1, z_1 \\
& x_2, y_2, z_2 \\
& x_3, y_3, z_3 \\
& \vdots \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{tStrip[0]} & 4, 0, 1, 2, 5, 8 \\
\text{tStrip[1]} & 6, 9, 0, 3, 2, 10, 7 \\
& \vdots \\
\end{array}
\]
Triangle strips

- **array of vertex positions**
 - float\[^nV\][3]: 12 bytes per vertex
 - (3 coordinates \(\times\) 4 bytes) per vertex
- **array of index lists**
 - int\[^nS\][variable]: 2 + \(n\) indices per strip
 - on average, \((1 + \varepsilon)\) indices per triangle (assuming long strips)
 - 2 triangles per vertex (on average)
 - about 4 bytes per triangle (on average)
- **total is 20 bytes per vertex (limiting best case)**
 - factor of 3.6 over separate triangles; 1.8 over indexed mesh
Triangle fans

- **Same idea as triangle strips, but keep oldest rather than newest**
 - every sequence of three vertices produces a triangle
 - e.g., 0, 1, 2, 3, 4, 5, … leads to
 (0 1 2), (0 2 3), (0 3 4), (0 4 5), …
 - for long fans, this requires about one index per triangle

- **Memory considerations exactly the same as triangle strip**