Triangle meshes I

CS 4620 Lecture 2
finite element analysis
A small triangle mesh

12 triangles, 8 vertices
A large mesh

10 million triangles from a high-resolution 3D scan
about a trillion-triangle worldwide model from semi-automatically processed satellite, aerial, and street photography
Triangles

- Defined by three *vertices*
- Lives in the plane containing those vertices
- Vector normal to plane is the triangle’s normal
- Conventions (for this class, not everyone agrees):
 - vertices are counter-clockwise as seen from the “outside” or “front”
 - surface normal points towards the outside (“outward facing normals”)
Triangle meshes

- A bunch of triangles in 3D space that are connected together to form a surface
- Geometrically, a mesh is a *piecewise planar* surface
 - almost everywhere, it is planar
 - exceptions are at the edges where triangles join
- Often, it’s a piecewise planar approximation of a smooth surface
 - in this case the creases between triangles are artifacts—we don’t want to see them
Representation of triangle meshes

• **Compactness**

• **Efficiency for rendering**
 – enumerate all triangles as triples of 3D points

• **Efficiency of queries**
 – all vertices of a triangle
 – all triangles around a vertex
 – neighboring triangles of a triangle
 – (need depends on application)
 • finding triangle strips
 • computing subdivision surfaces
 • mesh editing
Representations for triangle meshes

- **Separate triangles**
- **Indexed triangle set**
 - shared vertices
- **Triangle strips and triangle fans**
 - compression schemes for fast transmission
- **Triangle-neighbor data structure**
 - supports adjacency queries
- **Winged-edge data structure**
 - supports general polygon meshes

Interesting and useful but not used in Mesh assignment
Separate triangles

<table>
<thead>
<tr>
<th>tris[0]</th>
<th>[0]</th>
<th>[1]</th>
<th>[2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₀, y₀, z₀</td>
<td>x₂, y₂, z₂</td>
<td>x₁, y₁, z₁</td>
<td></td>
</tr>
<tr>
<td>x₀, y₀, z₀</td>
<td>x₃, y₃, z₃</td>
<td>x₂, y₂, z₂</td>
<td></td>
</tr>
<tr>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td></td>
</tr>
</tbody>
</table>

T₀
(x₀, y₀, z₀)
0

T₁
(x₁, y₁, z₁)
1

(x₂, y₂, z₂)
2

(x₃, y₃, z₃)
Separate triangles

- **array of triples of points**
 - float[nT][3][3]: about 72 bytes per vertex
 - 2 triangles per vertex (on average)
 - 3 vertices per triangle
 - 3 coordinates per vertex
 - 4 bytes per coordinate (float)

- **various problems**
 - wastes space (each vertex stored 6 times)
 - cracks due to roundoff
 - difficulty of finding neighbors at all
Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices

Triangle {
 Vertex vertex[3];
}

Vertex {
 float position[3]; // or other data
}

// ... or ...

Mesh {
 float verts[nv][3]; // vertex positions (or other data)
 int tInd[nt][3]; // vertex indices
}
Indexed triangle set

- **Store each vertex once**
- **Each triangle points to its three vertices**

Triangle {
 Vertex vertex[3];
}

Vertex {
 float position[3]; // or other data
}

// ... or ...

Mesh {
 float verts[nv][3]; // vertex positions (or other data)
 int tInd[nt][3]; // vertex indices
}
Indexed triangle set

<table>
<thead>
<tr>
<th>verts[0]</th>
<th>x_0, y_0, z_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>verts[1]</td>
<td>x_1, y_1, z_1</td>
</tr>
<tr>
<td></td>
<td>x_2, y_2, z_2</td>
</tr>
<tr>
<td></td>
<td>x_3, y_3, z_3</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tInd[0]</th>
<th>0, 2, 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>tInd[1]</td>
<td>0, 3, 2</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Diagram showing indexed triangle set with points $p_0, p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}$ and triangles T_0 and T_1. The vertices are connected by edges representing the triangle indices.
Estimating storage space

- \(n_T = \#\text{tris}; \ n_V = \#\text{verts}; \ n_E = \#\text{edges} \)

- Rule of thumb: \(n_T:n_E:n_V \) is about 2:3:1
Indexed triangle set

- array of vertex positions
 - float[n_V][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of triples of indices (per triangle)
 - int[n_T][3]: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
- total storage: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined
Data on meshes

• Often need to store additional information besides just the geometry
• Can store additional data at faces, vertices, or edges
• Examples
 – colors stored on faces, for faceted objects
 – information about sharp creases stored at edges
 – any quantity that varies continuously (without sudden changes, or discontinuities) gets stored at vertices
Key types of vertex data

- **Surface normals**
 - when a mesh is approximating a curved surface, store normals at vertices

- **Surface parameterizations**
 - providing a 2D coordinate system on the surface

- **Positions**
 - at some level this is just another piece of data
 - position varies continuously between vertices
Differential geometry 101

- **Tangent plane**
 - at a point on a smooth surface in 3D, there is a unique plane tangent to the surface, called the *tangent plane*

- **Normal vector**
 - vector perpendicular to a surface (that is, to the tangent plane)
 - only unique for smooth surfaces (not at corners, edges)
Surface parameterization

- A surface in 3D is a two-dimensional thing
- Sometimes we need 2D coordinates for points on the surface
- Defining these coordinates is parameterizing the surface
- Examples:
 - cartesian coordinates on a rectangle (or other planar shape)
 - cylindrical coordinates (θ, y) on a cylinder
 - latitude and longitude on the Earth’s surface
 - spherical coordinates (θ, ϕ) on a sphere
- Spoiler alert:
 - in graphics, parameterizations are most often used for texture mapping.
 - therefore many systems call the parameters “texture coordinates.”
Example: unit sphere

- **position:**
 \[x = \cos \theta \sin \phi \]
 \[y = \sin \theta \]
 \[z = \cos \theta \cos \phi \]

- **normal is position** (easy!)

- **texture coordinates**
 \[u = \frac{\theta}{\pi} + \frac{1}{2} \]
 \[v = \frac{\phi}{2\pi} \]
How to think about vertex normals

- **Piecewise planar approximation** converges pretty quickly to the smooth geometry as the number of triangles increases
 - for mathematicians: error is $O(h^2)$
- **But the surface normals** don’t converge so well
 - normal is constant over each triangle, with discontinuous jumps across edges
 - for mathematicians: error is only $O(h)$
- **Better:** store the “real” normal at each vertex, and **interpolate** to get normals that vary gradually across triangles
Interpolated normals—2D example

- Approximating circle with increasingly many segments
- Max error in position error drops by factor of 4 at each step
- Max error in normal only drops by factor of 2
Parameterizing a single triangle

- **Triangles**
 - specify \((u,v)\) for each vertex
 - define \((u,v)\) for interior by linear interpolation
Validity of triangle meshes

• in many cases we care about the mesh being able to bound a region of space nicely
• in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)
• two completely separate issues:
 – mesh topology: how the triangles are connected (ignoring the positions entirely)
 – geometry: where the triangles are in 3D space
Topology/geometry examples

• same geometry, different mesh topology:

• same mesh topology, different geometry:
Topological validity

- **strongest property: be a manifold**
 - this means that no points should be "special"
 - interior points are fine
 - edge points: each edge must have exactly 2 triangles
 - vertex points: each vertex must have one loop of triangles

- **slightly looser: manifold with boundary**
 - weaken rules to allow boundaries
Topological validity

- **Consistent orientation**
 - Which side is the “front” or “outside” of the surface and which is the “back” or “inside?”
 - rule: you are on the outside when you see the vertices in counter-clockwise order
 - in mesh, neighboring triangles should agree about which side is the front!
 - caution: not always possible

![Diagram of consistent orientation example](image)
Geometric validity

• generally want non-self-intersecting surface
• hard to guarantee in general
 – because far-apart parts of mesh might intersect
Triangle strips

- Take advantage of the mesh property
 - each triangle is usually adjacent to the previous
 - let every vertex create a triangle by reusing the second and third vertices of the previous triangle
 - every sequence of three vertices produces a triangle (but not in the same order)
 - e.g., 0, 1, 2, 3, 4, 5, 6, 7, … leads to
 (0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), …
 - for long strips, this requires about one index per triangle
Triangle strips

\[
\begin{array}{|c|c|}
\hline
\text{verts[0]} & x_0, y_0, z_0 \\
\hline
\text{verts[1]} & x_1, y_1, z_1 \\
\hline & x_2, y_2, z_2 \\
\hline & x_3, y_3, z_3 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\text{tStrip[0]} & 4, 0, 1, 2, 5, 8 \\
\hline
\text{tStrip[1]} & 6, 9, 0, 3, 2, 10, 7 \\
\hline
\end{array}
\]
Triangle strips

verts[0] = \begin{pmatrix} x_0, y_0, z_0 \\ x_1, y_1, z_1 \\ x_2, y_2, z_2 \\ x_3, y_3, z_3 \\ \vdots \end{pmatrix}

verts[1] = \begin{pmatrix} \vdots \end{pmatrix}

tStrip[0] = \begin{pmatrix} 4, 0, 1, 2, 5, 8 \end{pmatrix}

tStrip[1] = \begin{pmatrix} 6, 9, 0, 3, 2, 10, 7 \end{pmatrix}

\[\vdots \]
Triangle strips

- **array of vertex positions**
 - float[nv][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- **array of index lists**
 - int[nS][variable]: 2 + n indices per strip
 - on average, (1 + ε) indices per triangle (assuming long strips)
 - 2 triangles per vertex (on average)
 - about 4 bytes per triangle (on average)
- **total is 20 bytes per vertex (limiting best case)**
 - factor of 3.6 over separate triangles; 1.8 over indexed mesh
Triangle fans

- **Same idea as triangle strips, but keep oldest rather than newest**
 - every sequence of three vertices produces a triangle
 - e.g., 0, 1, 2, 3, 4, 5, … leads to
 - (0 1 2), (0 2 3), (0 3 4), (0 4 5), …
 - for long fans, this requires about one index per triangle

- **Memory considerations exactly the same as triangle strip**