CS 4620 Preliminary Exam \#1

Tuesday 5 October 2010-50 minutes
Explain your reasoning for full credit.
You are permitted a double-sided sheet of notes.
Calculators are allowed but unnecessary.

Problem 1: 2D Transformations (15 pts)
(i) Estimate the 2D affine transformation matrix, $\mathbf{T}=\left[\begin{array}{cc}\boldsymbol{F} & \boldsymbol{v} \\ 0^{T} & 1\end{array}\right] \in \mathbb{R}^{\mathbf{3} \times 3}$, given its action on three homogeneous points:

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \xrightarrow{\boldsymbol{T}}\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \xrightarrow{\boldsymbol{T}}\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) \xrightarrow{\boldsymbol{T}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .
$$

- Answer: You need to estimate \boldsymbol{F} and \boldsymbol{v} from its observed transformation of some 2D points,

$$
\left[\begin{array}{cc}
\boldsymbol{F} & \boldsymbol{v} \\
0^{T} & 1
\end{array}\right]\binom{\boldsymbol{p}_{k}}{1}=\binom{\boldsymbol{p}_{k}^{\prime}}{1} \quad \Longleftrightarrow \quad \boldsymbol{F} \boldsymbol{p}_{k}+\boldsymbol{v}=\boldsymbol{p}_{k}^{\prime}
$$

where we will denote

$$
\begin{gather*}
\boldsymbol{p}_{1}=\binom{1}{1} \longrightarrow \boldsymbol{p}_{1}^{\prime}=\binom{2}{1}, \tag{1}\\
\boldsymbol{p}_{2}=\binom{1}{-1} \longrightarrow \boldsymbol{p}_{2}^{\prime}=\binom{2}{1} \tag{2}\\
\boldsymbol{p}_{3}=\binom{-1}{-1} \longrightarrow \boldsymbol{p}_{3}^{\prime}=\binom{0}{1} . \tag{3}
\end{gather*}
$$

There are numerous ways to solve for \boldsymbol{F} and \boldsymbol{v}, with the least easy being setting it up as a large 6×6 system of equations. Another way is to solve for \boldsymbol{F} first (then compute the translation \boldsymbol{v}) by subtracting one equation from the other two

$$
\boldsymbol{F}\left(\boldsymbol{p}_{k}-\boldsymbol{p}_{j}\right)+\boldsymbol{v}=\left(\boldsymbol{p}_{k}^{\prime}-\boldsymbol{p}_{j}^{\prime}\right),
$$

to obtain the matrix form,

$$
\boldsymbol{F}\left[\begin{array}{ll}
\left(\boldsymbol{p}_{2}-\boldsymbol{p}_{1}\right) & \left.\left(\boldsymbol{p}_{3}-\boldsymbol{p}_{1}\right)\right]
\end{array}\right]\left[\begin{array}{ll}
\left(\boldsymbol{p}_{2}^{\prime}-\boldsymbol{p}_{1}^{\prime}\right) & \left(\boldsymbol{p}_{3}^{\prime}-\boldsymbol{p}_{1}^{\prime}\right)
\end{array}\right] \quad \Longleftrightarrow \boldsymbol{F P}=\boldsymbol{P}^{\prime}
$$

and then solve the 2×2 linear system for \boldsymbol{F},

$$
\boldsymbol{F}=\boldsymbol{P}^{\prime} \boldsymbol{P}^{-1}
$$

Finally you get the translation from any equation

$$
\boldsymbol{v}=\boldsymbol{p}_{k}^{\prime}-\boldsymbol{F} \boldsymbol{p}_{k}
$$

The simplest way is to observe that the data makes this problem easy: the first two points (which differ by the y coordinate) map to the same place, $\boldsymbol{p}_{1}^{\prime}=\boldsymbol{p}_{2}^{\prime}$, so the transformation \boldsymbol{F} must have a zero "y column." For
example, in a column-oriented form you can let $\boldsymbol{F}=[\boldsymbol{t} \boldsymbol{u}]$ where $\boldsymbol{t}, \boldsymbol{u} \in \mathbb{R}^{2}$, and let $\boldsymbol{p}_{k}=\left(x_{k}, y_{k}\right)^{T}$, so that we need to solve for the 3 vectors $\boldsymbol{t}, \boldsymbol{u}$ and \boldsymbol{v} :

$$
x_{k} \boldsymbol{t}+y_{k} \boldsymbol{u}+\boldsymbol{v}=\boldsymbol{p}_{k}^{\prime}, \quad k=1,2,3 .
$$

This leads to the system of equations

$$
\begin{align*}
\boldsymbol{t}+\boldsymbol{u}+\boldsymbol{v} & =\binom{2}{1} \tag{4}\\
\boldsymbol{t}-\boldsymbol{u}+\boldsymbol{v} & =\binom{2}{1} \tag{5}\\
-\boldsymbol{t}-\boldsymbol{u}+\boldsymbol{v} & =\binom{0}{1} \tag{6}
\end{align*}
$$

Subtracting the first two equations yields

$$
\boldsymbol{u}=\binom{0}{0}
$$

afterwhich adding the last two equations yields

$$
\boldsymbol{v}=\binom{1}{1}
$$

and so

$$
\boldsymbol{t}=\binom{1}{0}
$$

and the transformation matrix is

$$
\mathbf{T}=\left[\begin{array}{cc}
\boldsymbol{F} & \boldsymbol{v} \\
0^{T} & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

(ii) What kind of transformation does this matrix represent?

- Answer: It applies a nonuniform scale of $\left(s_{x}, s_{y}\right)=(1,0)$ (which projects away all y components) then translates by $(1,1)$.

Problem 2: Affine Transformations (10 pts)
Show that affine transformations preserve parallel lines.
(Hint: Recall the explicit parameterization of a line.)

- Answer: Consider two parallel lines whose points can be explicitly represented as

$$
\boldsymbol{p}_{k}+t \boldsymbol{u}, \quad k=1,2
$$

where each is parameterized by some $t \in \mathbb{R}$, and both point in the same \boldsymbol{u} direction (by virtue of being parallel) but have different base points \boldsymbol{p}_{k}. Applying an affine transformation $\left[\begin{array}{cc}\boldsymbol{F} & \boldsymbol{v} \\ 0^{T} & 1\end{array}\right]$ to such points produces new line points

$$
\boldsymbol{F}\left(\boldsymbol{p}_{k}+t \boldsymbol{u}\right)+\boldsymbol{v},=\left(\boldsymbol{F} \boldsymbol{p}_{k}+\boldsymbol{v}\right)+t \boldsymbol{F} \boldsymbol{u},=\boldsymbol{p}_{k}^{\prime}+t \boldsymbol{u}^{\prime}
$$

However, since both transformed lines point in the same direction $\boldsymbol{u}^{\prime}=\boldsymbol{F u}$, they are still parallel.

Problem 3: Quaternions (15 pts)
Rotate the point $\boldsymbol{p}=(1,1,1)$ using the rotation specified by the quaternion $q=\langle d ; \boldsymbol{u}\rangle=\langle 1 ; 1,1,1\rangle$.

- Answer: In short, the point is unchanged since it lies on the rotation axis. You can show this by using the definition of a unit quaternion. First, you need to make a unit quaternion and apply the definition

$$
\hat{q}=\frac{q}{\|q\|}=\frac{q}{\sqrt{4}}=<\frac{1}{2} ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}>=<\cos \frac{\theta}{2} ; \sin \frac{\theta}{2} \boldsymbol{v}>
$$

so that the unit axis of rotation, \boldsymbol{v}, is

$$
\sin \frac{\theta}{2} \boldsymbol{v}=\frac{1}{2}(1,1,1) \quad \Longrightarrow \quad \boldsymbol{v}=\frac{1}{\sqrt{3}}(1,1,1)
$$

Clearly since $\boldsymbol{p}=(1,1,1)$ lies on the rotation axis, the rotated version will not change under rotation, $\boldsymbol{p}^{\prime}=\boldsymbol{p}$. Arguing thus was sufficient to receive full credit.
Alternately many people proceeded directly to apply the quaternion multiplication formulas, which would also work. We can represent the point using a quaternion vector, which before and after rotation is

$$
\tilde{\boldsymbol{p}}=<0 ; \boldsymbol{p}>, \quad \text { and } \quad \tilde{\boldsymbol{p}}^{\prime}=<0 ; \boldsymbol{p}^{\prime}>
$$

Then the quaternion rotation formula is (using the unit quaternion version for convenience)

$$
\begin{align*}
\tilde{\boldsymbol{p}}^{\prime} & =\hat{q} \tilde{\boldsymbol{p}} \hat{q}^{*} \tag{7}\\
& =\left(\frac{1}{2}<1 ; 1,1,1>\right)<0 ; \boldsymbol{p}>\left(\frac{1}{2}<1 ;-1,-1,-1>\right) \tag{8}\\
& =\frac{1}{4}<1 ; 1,1,1><0 ; 1,1,1><1 ;-1,-1,-1> \tag{9}
\end{align*}
$$

then using the formula for quaternion multiplication

$$
<d ; \boldsymbol{u}><d^{\prime} ; \boldsymbol{u}^{\prime}>=<d d^{\prime}-\boldsymbol{u} \cdot \boldsymbol{u}^{\prime} ; d \boldsymbol{u}^{\prime}+d^{\prime} \boldsymbol{u}+\boldsymbol{u} \times \boldsymbol{u}^{\prime}>
$$

we obtain

$$
\begin{align*}
\tilde{\boldsymbol{p}}^{\prime} & =\frac{1}{4}<1 ; 1,1,1><0 ; 1,1,1><1 ;-1,-1,-1> \tag{10}\\
& =\frac{1}{4}<-3 ; 1,1,1><1 ;-1,-1,-1> \tag{11}\\
& =\frac{1}{4}<0 ; 4,4,4> \tag{12}\\
& =<0 ; 1,1,1> \tag{13}\\
& =<0 ; \boldsymbol{p}> \tag{14}
\end{align*}
$$

Problem 4: SLERP (10 pts)
When interpolating with SLERP between two unit quaternions, \boldsymbol{x} and \boldsymbol{y}, we use:

$$
\operatorname{SLERP}(\boldsymbol{x}, \boldsymbol{y}, \alpha) \text {, if } \boldsymbol{x} \cdot \boldsymbol{y}>0 \text {, and } \operatorname{SLERP}(\boldsymbol{x},-\boldsymbol{y}, \alpha) \text { otherwise. }
$$

(i) Why is this method better than just $\operatorname{SLERP}(\boldsymbol{x}, \boldsymbol{y}, \alpha)$? What is the difference between $+\boldsymbol{y}$ and $-\boldsymbol{y}$ here?

- Answer: Recall that scaling a quaternion by a nonzero constant does not change the rotation it represents, and therefore $\pm \boldsymbol{y}$ both represent the same physical rotation. The only difference is the size of the interpolation performed, which is related to the angle Ω between \boldsymbol{x} and \boldsymbol{y}, given by $\Omega=\cos ^{-1}(\boldsymbol{x} \cdot \boldsymbol{y})$. The two interpolation paths differ by which way they travel around the great circle, and the formula just takes the shorter path-as many students illustrated with a figure.
(ii) When interpolating unit normal vectors, \boldsymbol{n}_{1} and \boldsymbol{n}_{2}, for lighting calculations, should we also use $\operatorname{SLERP}\left(\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \alpha\right)$, if $\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}>0$, and $\operatorname{SLERP}\left(\boldsymbol{n}_{1},-\boldsymbol{n}_{2}, \alpha\right)$ otherwise?
- Answer: No, because, unlike quaternions for which $\pm q$ correspond to the same physical rotations, $\pm \boldsymbol{n}$ correspond to different normals for shading/lighting calculations. Using this formula would lead to interpolated normals which vary insufficiently when the two normals are at angles greater than 90°.

