Images

CS 4620 Lecture 38
Announcements

- A7 extended by 24 hours
Color displays

- Operating principle: humans are trichromatic
 - match any color with blend of three
 - therefore, problem reduces to producing 3 images and blending

- Additive color
 - blend images by sum
 - e.g. overlapping projection
 - e.g. unresolved dots
 - R, G, B make good primaries
Color displays

- CRT: phosphor dot pattern to produce finely interleaved color images

- LCD, LED: interleaved R, G, B pixels
Digital camera

• A raster input device
• Image sensor contains 2D array of photosensors
Digital camera

- Color typically captured using color mosaic
The eye as a measurement device

- We can model the low-level behavior of the eye by thinking of it as a light-measuring machine
 - its optics are much like a camera
 - its detection mechanism is also much like a camera

- Light is measured by the photoreceptors in the retina
 - they respond to visible light
 - different types respond to different wavelengths

[C] Greger et al. 1995
Photoreceptors

- 120 million rods
- 7-8 million cones in each eye
- rods: scotopic
- cones: photopic
Receptor distribution

© Kavita Bala, Computer Science, Cornell University

Cone Responses

- S,M,L cones have broadband spectral sensitivity
- Results in a trichromatic visual system
- S, M, and L are *tristimulus values*
A simple light detector

- Produces a scalar value (a number) when photons land on it
 - this value depends strictly on the number of photons detected
 - each photon has a probability of being detected that depends on the wavelength
 - there is no way to tell the difference between signals caused by light of different wavelengths: there is just a number

- This model works for many detectors:
 - based on semiconductors (such as in a digital camera)
 - based on visual photopigments (such as in human eyes)
A simple light detector

\[X = \int n(\lambda)p(\lambda) \, d\lambda \]
Light detection math

- Same math carries over to power distributions
 - Spectrum entering the detector has its spectral power distribution (SPD), $s(\lambda)$
 - Detector has its *spectral sensitivity* or *spectral response*, $r(\lambda)$

$$X = \int s(\lambda) r(\lambda) \, d\lambda$$

- Measured signal
- Detector's sensitivity
- Input spectrum
Light detection math

\[X = \int s(\lambda) r(\lambda) \, d\lambda \quad \text{or} \quad X = s \cdot r \]

- If we think of \(s \) and \(r \) as vectors, this operation is a dot product (aka inner product)
 - in fact, the computation is done exactly this way, using sampled representations of the spectra.

- let \(\lambda_i \) be regularly spaced sample points \(\Delta \lambda \) apart; then:
 \[\tilde{s}[i] = s(\lambda_i); \tilde{r}[i] = r(\lambda_i) \]

\[\int s(\lambda) r(\lambda) \, d\lambda \approx \sum_i \tilde{s}[i] \tilde{r}[i] \Delta \lambda \]

- this sum is very clearly a dot product
Cone responses to a spectrum s

\[S = \int r_S(\lambda)s(\lambda) \, d\lambda = r_S \cdot s \]

\[M = \int r_M(\lambda)s(\lambda) \, d\lambda = r_M \cdot s \]

\[L = \int r_L(\lambda)s(\lambda) \, d\lambda = r_L \cdot s \]
Colorimetry: mapping light to signals

- Want to map a *Physical light description* to a *Perceptual color sensation*
- Basic solution was known and standardized by 1930

\[
S = r_S \cdot s \\
M = r_M \cdot s \\
L = r_L \cdot s
\]
Basic fact of colorimetry

• Take a spectrum (which is a function)
• Eye produces three numbers
• This throws away a lot of information!
 – Quite possible to have two different spectra that have the same S, M, L tristimulus values
 – Two such spectra are metamers
Chromaticity Diagram

spectral locus

purple line
Chromaticity Diagram
Color Gamuts

Monitors/printers can’t produce all visible colors

Reproduction is limited to a particular domain

For additive color (e.g. monitor) gamut is the triangle defined by the chromaticities of the three primaries.
Color reproduction

• Have a spectrum s; want to match on RGB monitor
 – “match” means it looks the same
 – any spectrum that projects to the same point in the visual color space is a good reproduction

• Must find a spectrum that the monitor can produce that is a metamer of s
Basic colorimetric concepts

• Luminance
 – the overall magnitude of the visual response to a spectrum (independent of its color)
 • corresponds to the everyday concept “brightness”
 – determined by product of SPD with the luminous efficiency function V_λ that describes the eye’s overall ability to detect light at each wavelength
 – e.g. lamps are optimized to improve their luminous efficiency (tungsten vs. fluorescent vs. sodium vapor)

[Stone 2003]
Luminance, mathematically

- Y just has another response curve (like S, M, and L)
 \[
 Y = r_Y \cdot s
 \]
 - r_Y is really called “V_λ”
- V_λ is a linear combination of S, M, and L
 - Has to be, since it’s derived from cone outputs
More basic colorimetric concepts

• Chromaticity
 – what’s left after luminance is factored out (the color without regard for overall brightness)
 – scaling a spectrum up or down leaves chromaticity alone

• Dominant wavelength
 – many colors can be matched by white plus a spectral color
 – correlates to everyday concept “hue”

• Purity
 – ratio of pure color to white in matching mixture
 – correlates to everyday concept “colorfulness” or “saturation”
Datatypes for raster images

• Bitmaps: boolean per pixel (1 bpp):
 – interp. = black and white; e.g. fax

• Grayscale: integer per pixel:
 – interp. = shades of gray; e.g. black-and-white print
 – precision: usually byte (8 bpp); sometimes 10, 12, or 16 bpp

• Color: 3 integers per pixel:
 – interp. = full range of displayable color; e.g. color print
 – sometimes 16 (5+6+5) or 30 or 36 or 48 bpp

• Floating point: more abstract, because no output device has infinite range
 – provides high dynamic range (HDR)
 – represent real scenes independent of display
 – becoming the standard intermediate format in graphics processor
Intensity encoding in images

• What do the numbers in images (pixel values) mean?
 – they determine how bright that pixel is
 – for floating point pixels, they directly give the intensity (in some units) — they are linearly related to the intensity
 – for pixels encoded in integers, this mapping is not direct

• Transfer function: function that maps input pixel value to luminance of displayed image
 \[I = f(n) \quad f : [0, N] \rightarrow [I_{\text{min}}, I_{\text{max}}] \]

• What determines this function?
 – physical constraints of device or medium
 – desired visual characteristics
Transfer function shape

• Desirable property: the change from one pixel value to the next highest pixel value should not produce a visible contrast
 – otherwise smooth areas of images will show visible bands

• What contrasts are visible?
 – rule of thumb: under good conditions we can notice a 2% change in intensity
 – therefore we generally need smaller quantization steps in the darker tones than in the lighter tones
 – most efficient quantization is logarithmic
Transfer function

• Something like this:
Constraints on transfer function

• Maximum displayable intensity, I_{max}
 – how much power can be channeled into a pixel?
 • LCD: backlight intensity, transmission efficiency (<10%)
 • projector: lamp power, efficiency of imager and optics

• Minimum displayable intensity, I_{min}
 – light emitted by the display in its “off” state
 • e.g. stray electron flux in CRT, polarizer quality in LCD

• Viewing flare, k: light reflected by the display
 – very important factor determining image contrast in practice
 • 5% of I_{max} is typical in a normal office environment [sRGB spec]
 • much effort to make very black CRT and LCD screens
 • all-black decor in movie theaters
Dynamic range

- Dynamic range $R_d = \frac{I_{\text{max}}}{I_{\text{min}}}$, or $\frac{(I_{\text{max}} + k)}{(I_{\text{min}} + k)}$
 - determines the degree of image contrast that can be achieved
 - a major factor in image quality

- Ballpark values
 - Desktop display in typical conditions: 20:1
 - Photographic print: 30:1
 - Desktop display in good conditions: 100:1
 - High-end display under ideal conditions: 1000:1
 - Digital cinema projection: 1000:1
 - Photographic transparency (directly viewed): 1000:1
 - High dynamic range display: 10,000:1
How many levels are needed?

• Depends on dynamic range
 – 2% steps are most efficient:
 \[0 \leftrightarrow I_{\text{min}}; 1 \leftrightarrow 1.02 I_{\text{min}}; 2 \leftrightarrow (1.02)^2 I_{\text{min}}; \ldots \]
 – \(\log 1.02 \) is about \(1/120 \), so 120 steps per decade of dynamic range
 • 240 for desktop display
 • 480 to drive HDR display

• If we want to use linear quantization (equal steps)
 – one step must be < 2% (1/50) of \(I_{\text{min}} \)
 – need to get from \(\sim 0 \) to \(I_{\text{min}} \cdot R_d \), so need about 50 \(R_d \) levels
 • 1500 for a print; 5000 for desktop display; 500,000 for HDR display

• Moral: 8 bits is just barely enough for low-end applications
 – but only if we are careful about quantization
Intensity quantization in practice

• Option 1: linear quantization \[I(n) = \left(\frac{n}{N} \right) I_{\text{max}} \]
 – pro: simple, convenient, amenable to arithmetic
 – con: requires more steps (wastes memory)
 – need 12 bits for any useful purpose; more than 16 for HDR

• Option 2: power-law quantization \[I(n) = \left(\frac{n}{N} \right)^\gamma I_{\text{max}} \]
 – pro: fairly simple, approximates ideal exponential quantization
 – con: need to linearize before doing pixel arithmetic
 – con: need to agree on exponent
 – 8 bits are OK for many applications; 12 for more critical ones
Why gamma?

• Power-law quantization, or \textit{gamma correction} is most popular

• Original reason: CRTs are like that
 – intensity on screen is proportional to (roughly) voltage\(^2\)

• Continuing reason: inertia + memory savings
 – inertia: gamma correction is close enough to logarithmic that there’s no sense in changing
 – memory: gamma correction makes 8 bits per pixel an acceptable option
Gamma quantization

- Close enough to ideal perceptually uniform exponential exponential
Gamma correction

- Sometimes (often, in graphics) we have computed intensities a that we want to display linearly
- In the case of an ideal monitor with zero black level,

$$I(n) = (n/N)^\gamma$$

(where $N = 2^n - 1$ in n bits). Solving for n:

$$n(I) = NI^{1/\gamma}$$

- This is the “gamma correction” recipe that has to be applied when computed values are converted to 8 bits for output
 - failing to do this (implicitly assuming gamma = 1) results in dark, oversaturated images
Gamma correction

corrected for γ lower than display

OK

corrected for γ higher than display
sRGB quantization curve

- The predominant standard for “casual color” in computer displays
 - consistent with older typical practice
 - designed to work well under imperfect conditions
 - these days all monitors are calibrated to sRGB by default
 - in practice, usually defines what your pixel values mean

\[I(C) = \begin{cases} \frac{C}{12.92}, & C \leq 0.04045 \\ \left(\frac{C+a}{1+a} \right)^{2.4}, & C > 0.04045 \end{cases} \]

\[C = \frac{n}{N} \]
\[a = 0.055 \]
Converting from HDR to LDR

- “High dynamic range” — pixels can be arbitrarily bright or dark
- “Low dynamic range” — there are limits on the min and max

- Simplest solution: just scale and clamp
- More flexible: introduce a contrast control

- Scale factor a is “exposure”
 - often quoted on a power-of-2 scale