Rasterization

CS 4620 Lecture 16
Announcements

• A3 due on Thu
 – Will send mail about grading once finalized
Pipeline overview

you are here → APPLICATION

3D transformations; shading → VERTEX PROCESSING

conversion of primitives to pixels → RASTERIZATION

blending, compositing, shading → FRAGMENT PROCESSING

user sees this → FRAMEBUFFER IMAGE → DISPLAY

3D transformations; shading
conversion of primitives to pixels
blending, compositing, shading
user sees this
Primitives

• Points

• Line segments
 – and chains of connected line segments

• Triangles

• And that’s all!
 – Curves? Approximate them with chains of line segments
 – Polygons? Break them up into triangles
 – Curved regions? Approximate them with triangles

• Hardware desire: minimal primitives
 – simple, uniform, repetitive: good for parallelism
 – send curves, and the vertex shader will convert to primitives
Rasterization

• First job: enumerate the pixels covered by a primitive
 – simple, aliased definition: pixels whose centers fall inside

• Second job: interpolate values across the primitive
 – e.g. colors computed at vertices
 – e.g. normals at vertices
 – e.g. texture coordinates
Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside
Point sampling

• Approximate rectangle by drawing all pixels whose centers fall within the line
Point sampling in action

Problem: Turns on adjacent pixels
Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner
Midpoint algorithm in action
Algorithms for drawing lines

- line equation:
 \[y = b + m x \]

- Simple algorithm:
 evaluate line equation per column

- W.l.o.g. \(x_0 < x_1 \);
 \[0 \leq m \leq 1 \]

\[
\text{for } x = \text{ceil}(x0) \text{ to floor}(x1) \\
y = b + m \times x \\
\text{output}(x, \text{round}(y))
\]

\[y = 1.91 + 0.37 \times \]
Optimizing line drawing

- Multiplying and rounding is slow
- At each pixel the only options are E and NE
- \(d = m(x + 1) + b - y \)
- \(d \geq 0.5 \) decides between E and NE
Optimizing line drawing

- \(d = m(x + 1) + b - y \)
- Only need to update \(d \) for integer steps in \(x \) and \(y \)
- Do that with addition
- Known as “DDA” (digital differential analyzer)
Midpoint line algorithm

\[
x = \text{ceil}(x_0) \\
y = \text{round}(m \cdot x + b) \\
d = m \cdot (x + 1) + b - y \\
\text{while } x < \text{floor}(x_1) \\
\quad \text{if } d \geq 0.5 \\
\quad \quad y \leftarrow y + 1 \\
\quad \quad d \leftarrow d - 1 \\
\quad x \leftarrow x + 1 \\
\quad d \leftarrow d + m \\
\text{output}(x, y)
\]
Linear interpolation

• We often attach attributes to vertices
 – e.g. computed diffuse color of a hair being drawn using lines
 – want color to vary smoothly along a chain of line segments
• Basic definition of interpolation
 – 1D: \(f(x) = (1 - \alpha) y_0 + \alpha y_1 \)
 – where \(\alpha = \frac{x - x_0}{x_1 - x_0} \)
• In the 2D case of a line segment, alpha is just the fraction of the distance from \((x_0, y_0)\) to \((x_1, y_1)\)
Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use DDA to interpolate
Alternate interpretation

• We are updating d and α as we step from pixel to pixel
 – d tells us how far from the line we are
 – α tells us how far along the line we are
Alternate interpretation

- View loop as visiting all pixels the line passes through
 - Interpolate \(d \) and \(\alpha \) for each pixel
 - Only output frag. if pixel is in band
- This makes linear interpolation the primary operation
Pixel-walk line rasterization

\[x = \text{ceil}(x_0) \]
\[y = \text{round}(m \cdot x + b) \]
\[d = m \cdot x + b - y \]
while \(x < \text{floor}(x_1) \)

 if \(d > 0.5 \)

 \[y += 1; \quad d -= 1; \]

 else

 \[x += 1; \quad d += m; \]
if \(-0.5 < d \leq 0.5\)

 output\((x, y)\)
Rasterizing triangles

• The most common case in most applications
 – with good antialiasing can be the only case
 – some systems render a line as two skinny triangles

• Triangle represented by three vertices

• Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization
 – walk from pixel to pixel over (at least) the polygon’s area
 – evaluate linear functions as you go
 – use those functions to decide which pixels are inside
Rasterizing triangles

• **Input:**
 - three 2D points (the triangle’s vertices in pixel space)
 * $(x_0, y_0); (x_1, y_1); (x_2, y_2)$
 - parameter values at each vertex
 * $q_{00}, \ldots, q_{0n}; q_{10}, \ldots, q_{1n}; q_{20}, \ldots, q_{2n}$

• **Output:** a list of fragments, each with
 - the integer pixel coordinates (x, y)
 - interpolated parameter values q_0, \ldots, q_n
Rasterizing triangles

1 evaluation of linear functions on pixel grid
2 functions defined by parameter values at vertices
3 using extra parameters to determine fragment set
Incremental linear evaluation

- A linear (affine, really) function on the plane is:
 \[q(x, y) = c_x x + c_y y + c_k \]

- Linear functions are efficient to evaluate on a grid:
 \[q(x + 1, y) = c_x (x + 1) + c_y y + c_k = q(x, y) + c_x \]
 \[q(x, y + 1) = c_x x + c_y (y + 1) + c_k = q(x, y) + c_y \]
Incremental linear evaluation

\[
\text{linEval}(x_m, x_M, y_m, y_M, c_x, c_y, c_k) \{

// setup
qRow = c_x * x_m + c_y * y_m + c_k;

// traversal
\text{for } y = y_m \text{ to } y_M \{
qPix = qRow;
\text{for } x = x_m \text{ to } x_M \{
 \text{output}(x, y, qPix);
 qPix += c_x;
\}
qRow += c_y;
\}
\}
\]

\[c_x = .005; c_y = .005; c_k = 0\]

(image size 100x100)
Defining parameter functions

- To interpolate parameters across a triangle we need to find the c_x, c_y, and c_k that define the (unique) linear function that matches the given values at all 3 vertices
 - this is 3 constraints on 3 unknown coefficients:

 \[c_x x_0 + c_y y_0 + c_k = q_0 \]
 \[c_x x_1 + c_y y_1 + c_k = q_1 \]
 \[c_x x_2 + c_y y_2 + c_k = q_2 \]

 (each states that the function agrees with the given value at one vertex)

 - leading to a 3×3 matrix equation for the coefficients:

 \[
 \begin{bmatrix}
 x_0 & y_0 & 1 \\
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 \\
 \end{bmatrix}
 \begin{bmatrix}
 c_x \\
 c_y \\
 c_k \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 q_0 \\
 q_1 \\
 q_2 \\
 \end{bmatrix}
 \]

 (singular iff triangle is degenerate)
Defining parameter functions

• More efficient version: shift origin to (x_0, y_0)

\[
q(x, y) = c_x(x - x_0) + c_y(y - y_0) + q_0
\]

\[
q(x_1, y_1) = c_x(x_1 - x_0) + c_y(y_1 - y_0) + q_0 = q_1
\]

\[
q(x_2, y_2) = c_x(x_2 - x_0) + c_y(y_2 - y_0) + q_0 = q_2
\]

– now this is a 2x2 linear system (since q_0 falls out):

\[
\begin{bmatrix}
(x_1 - x_0) & (y_1 - y_0) \\
(x_2 - x_0) & (y_2 - y_0)
\end{bmatrix}
\begin{bmatrix}
c_x \\
c_y
\end{bmatrix} =
\begin{bmatrix}
q_1 - q_0 \\
q_2 - q_0
\end{bmatrix}
\]

– solve using Cramer’s rule (see Shirley):

\[
\begin{aligned}
c_x &= (\Delta q_1 \Delta y_2 - \Delta q_2 \Delta y_1) / (\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1) \\
c_y &= (\Delta q_2 \Delta x_1 - \Delta q_1 \Delta x_2) / (\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)
\end{aligned}
\]
Defining parameter functions

\[
\text{linInterp}(xm, xM, yM, x0, y0, q0, x1, y1, q1, x2, y2, q2) \{ \\
\text{// setup} \\
det = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0); \\
cx = ((q1-q0)*(y2-y0) - (q2-q0)*(y1-y0)) / det; \\
cy = ((q2-q0)*(x1-x0) - (q1-q0)*(x2-x0)) / det; \\
qRow = cx*(xm-x0) + cy*(ym-y0) + q0; \\
\text{// traversal (same as before)} \\
\text{for } y = ym \text{ to } yM \{ \\
\text{qPix} = qRow; \\
\text{for } x = xm \text{ to } xM \{ \\
\text{output}(x, y, qPix); \\
\text{qPix} += cx; \\
\} \\
\text{qRow} += cy; \\
\} \\
\}
\]
Interpolating several parameters

\[
\text{linInterp}(xm, xM, ym, yM, n, x0, y0, q0[],
 x1, y1, q1[], x2, y2, q2[]) \{

 // setup
 for k = 0 to n-1
 // compute cx[k], cy[k], qRow[k]
 // from q0[k], q1[k], q2[k]

 // traversal
 for y = ym to yM {
 for k = 1 to n, qPix[k] = qRow[k];
 for x = xm to xM {
 output(x, y, qPix);
 for k = 1 to n, qPix[k] += cx[k];
 }
 for k = 1 to n, qRow[k] += cy[k];
 }
\}
Clipping to the triangle

• Interpolate three barycentric coordinates across the plane
 – recall each barycentric coord is 1 at one vert. and 0 at the other two

• Output fragments only when all three are > 0.
Rasterizing triangles

• Summary
 1. evaluation of linear functions on pixel grid
 2. functions defined by parameter values at vertices
 3. using extra parameters to determine fragment set
Pixel-walk (Pineda) rasterization

- Conservatively visit a superset of the pixels you want
- Interpolate linear functions
- Use those functions to determine when to emit a fragment
Rasterizing triangles

• Exercise caution with rounding and arbitrary decisions
 – need to visit these pixels once
 – but it’s important not to visit them twice!
Clipping

- Rasterizer tends to assume triangles are on screen
 - particularly problematic to have triangles crossing the plane $z = 0$
- After projection, before perspective divide
 - clip against the planes $x, y, z = 1, -1$ (6 planes)
 - primitive operation: clip triangle against axis-aligned plane
Clipping a triangle against a plane

• 4 cases, based on sidedness of vertices
 – all in (keep)
 – all out (discard)
 – one in, two out (one clipped triangle)
 – two in, one out (two clipped triangles)