Ray Tracing (Intersection)

CS 4620 Lecture 6
Announcements

• A1 is done
 – Demo slots on Monday evening. Sign up.

• A2 will be out today

• Updated office hours in a calendar to make sure we are all synced up
Image so far

- With sphere intersection

```java
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
  for 0 <= ix < nx {
    ray = camera.getRay(ix, iy);
    bool didhit = s.intersect(ray, 0, +inf)
    if didhit
      image.set(ix, iy, white);
  }
```
Ray-triangle intersection

- In plane, triangle is the intersection of 3 half spaces
Ray-triangle intersection

• Condition 1: point is on ray
 \[r(t) = p + td \]

• Condition 2: point is on plane
 \[(x - a) \cdot n = 0 \]

• Condition 3: point is on the inside of all three edges

• First solve 1 & 2 (ray–plane intersection)
 – substitute and solve for \(t \):
 \[(p + td - a) \cdot n = 0 \]
 \[t = \frac{(a - p) \cdot n}{d \cdot n} \]
Deciding about insideness

• Need to check whether hit point is inside 3 edges
 – easiest to do in 2D coordinates on the plane
• Will also need to know where we are in the triangle
 – for textures, shading, etc. … next couple of lectures
• Efficient solution: transform to coordinates aligned to the triangle
Barycentric coordinates

• A coordinate system for triangles
 – algebraic viewpoint:
 \[p = \alpha a + \beta b + \gamma c \]
 \[\alpha + \beta + \gamma = 1 \]
 – geometric viewpoint (areas):

• Triangle interior test:
 \[\alpha > 0; \quad \beta > 0; \quad \gamma > 0 \]
Barycentric coordinates

- Linear viewpoint: basis for the plane

\[\alpha = 1 - \beta - \gamma \]
\[p = a + \beta(b - a) + \gamma(c - a) \]

- In this view, the triangle interior test is just

\[\beta > 0; \quad \gamma > 0; \quad \beta + \gamma < 1 \]
Barycentric ray-triangle intersection

• Every point on the plane can be written in the form:
 \[a + \beta(b - a) + \gamma(c - a) \]
 for some numbers \(\beta \) and \(\gamma \).

• If the point is also on the ray then it is
 \[p + td \]
 for some number \(t \).

• Set them equal: 3 linear equations in 3 variables
 \[p + td = a + \beta(b - a) + \gamma(c - a) \]
 …solve them to get \(t, \beta, \) and \(\gamma \) all at once!
Barycentric ray-triangle intersection

\[\mathbf{p} + t \mathbf{d} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a}) \]

\[\beta(\mathbf{a} - \mathbf{b}) + \gamma(\mathbf{a} - \mathbf{c}) + t \mathbf{d} = \mathbf{a} - \mathbf{p} \]

\[
\begin{bmatrix}
\mathbf{a} - \mathbf{b} & \mathbf{a} - \mathbf{c} & \mathbf{d}
\end{bmatrix}
\begin{bmatrix}
\beta \\
\gamma \\
t
\end{bmatrix}
= \begin{bmatrix}
\mathbf{a} - \mathbf{p}
\end{bmatrix}
\]

\[
\begin{bmatrix}
x_a - x_b & x_a - x_c & x_d \\
y_a - y_b & y_a - y_c & y_d \\
z_a - z_b & z_a - z_c & z_d
\end{bmatrix}
\begin{bmatrix}
\beta \\
\gamma \\
t
\end{bmatrix}
= \begin{bmatrix}
x_a - x_p \\
y_a - y_p \\
z_a - z_p
\end{bmatrix}
\]

Cramer’s rule is a good fast way to solve this system
(see text Ch. 2 and Ch. 4 for details)
Ray intersection in software

- All surfaces need to be able to intersect rays with themselves.

```java
class Surface {
    ...
    abstract boolean intersect(IntersectionRecord result, Ray r);
}
```

```java
class IntersectionRecord {
    float t;
    Vector3 hitLocation;
    Vector3 normal;
    ...
}
```
Image so far

- With eye ray generation and sphere intersection

```java
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
    for 0 <= ix < nx {
        ray = camera.getRay(ix, iy);
        bool didhit = s.intersect(hit, ray)
        if didhit
            image.set(ix, iy, white);
    }
```
Ray intersection in software

- Scenes usually have many objects
- Need to find the first intersection along the ray
 - that is, the one with the smallest positive t value
- Loop over objects
 - ignore those that don’t intersect
 - keep track of the closest seen so far
 - Convenient to give rays an ending t value for this purpose (then they are really segments)
Intersection against many shapes

• The basic idea is:

```cpp
intersect (ray, tMin, tMax) {
    tBest = +inf; firstSurface = null;
    for surface in surfaceList {
        bool didhit = surface.intersect(hit, ray, tMin, tBest);
        if didhit {
            tBest = hit.t;
            firstSurface = hit.Surface;
        }
    }
    return firstSurface, tBest;
}
```

- this is linear in the number of shapes
 but there are sublinear methods (acceleration structures)
Generating eye rays—planar projection

- Ray origin (varying): pixel position on viewing window
- Ray direction (constant): view direction
Generating eye rays—perspective

- Ray origin (constant): viewpoint
- Ray direction (varying): toward pixel position on viewing window
Software interface for cameras

• Key operation: generate ray for image position

```
class Camera {
    ...
    Ray generateRay(int col, int row);
}
```

• Modularity problem: Camera shouldn’t have to worry about image resolution
 – better solution: normalized coordinates

```
class Camera {
    ...
    Ray generateRay(float u, float v);
}
```
Specifying views in Ray 1

```xml
<camera type="OrthographicCamera">
  <viewPoint>10 4.2 6</viewPoint>
  <viewDir>-5 -2.1 -3</viewDir>
  <viewUp>0 1 0</viewUp>
  <viewWidth>4</viewWidth>
  <viewHeight>2.25</viewHeight>
</camera>

<camera type="PerspectiveCamera">
  <viewPoint>10 4.2 6</viewPoint>
  <viewDir>-5 -2.1 -3</viewDir>
  <viewUp>0 1 0</viewUp>
  <projDistance>6</projDistance>
  <viewWidth>4</viewWidth>
  <viewHeight>2.25</viewHeight>
</camera>
```
Generating eye rays—orthographic

• Just need to compute the view plane point s:

\[p = s; \quad d = d_v \]

\[r(t) = p + td \]

– but where exactly is the view rectangle?
Generating eye rays—orthographic

• Positioning the view rectangle
 – establish three vectors to be camera basis: \(u, v, w \)
 – view rectangle is in \(u-v \) plane, specified by \(l, r, t, b \)
 – now ray generation is easy:

\[
\begin{align*}
 s &= e + uu + vv \\
 p &= s; \quad d = -w \\
 r(t) &= p + td
\end{align*}
\]
Camera

• Orthonormal bases
 – viewPoint == e
 – viewDir == -w, viewUp == v
 • Compute u from the above
Generating eye rays—perspective

• View rectangle needs to be away from viewpoint
• Distance is important: “focal length” of camera
 – still use camera frame but position view rect away from viewpoint
 – ray origin always \(e \)
 – ray direction now controlled by \(s \)

\[
p = e \\
r(t) = p + td
\]
Generating eye rays—perspective

- Compute \(s \) in the same way; just subtract \(dw \)
 - coordinates of \(s \) are \((u, v, -d)\)

\[
\begin{align*}
 s &= e + uu + vv - dw \\
p &= e; \quad d = s - e \\
r(t) &= p + td
\end{align*}
\]
Specifying views in Ray 1

```xml
<camera type="PerspectiveCamera">
  <viewPoint>10 4.2 6</viewPoint>
  <viewDir>-5 -2.1 -3</viewDir>
  <viewUp>0 1 0</viewUp>
  <projDistance>6</projDistance>
  <viewWidth>4</viewWidth>
  <viewHeight>2.25</viewHeight>
</camera>

<camera type="PerspectiveCamera">
  <viewPoint>10 4.2 6</viewPoint>
  <viewDir>-5 -2.1 -3</viewDir>
  <viewUp>0 1 0</viewUp>
  <projDistance>3</projDistance>
  <viewWidth>4</viewWidth>
  <viewHeight>2.25</viewHeight>
</camera>
```
Camera

- Orthonormal bases
 - viewPoint == e
 - viewDir == -w, viewUp == v
 - Compute u from the above

l = -viewWidth/2
r = +viewWidth/2
n_x = imageWidth
Where are the pixels located?

\[u = l + (r - l)(i + 0.5)/n_x \]
\[v = b + (t - b)(j + 0.5)/n_y \]