
CS 4620 Final Exam

Wednesday 9, December 2009—21
2 hours

Prof. Doug James

Explain your reasoning for full credit.
You are permitted a double-sided sheet of notes.
Calculators are allowed but unnecessary.

Problem 1: Continuity (8 pts)

You have learned about parametric and geometric continuity. For each 2D curve, answer the continuity
query as correctly as possible, and provide a brief explanation:

(a) Is a circle C0 continuous?

• Answer: Parametric “C” continuity refers to the continuity of the parameterization used. How-
ever, since no parameterization has been specified, the question is ambiguous—circle parame-
terizations may or may not be C0.

(b) Is a circle G0 continuous?

• Answer: Geometric “G” continuity refers to the continuity of the geometric shape. Yes the
circle is G0 continuous because the curve is connected (unbroken) everywhere.

(c) Is a circle C∞ continuous?

• Answer: Again it is unclear, since no parameterization has been specified. Circle parameteriza-
tions may or may not be C0.

(d) Is a circle G∞ continuous?

• Answer: Yes, because the circle is infinitely smooth. It can also be parameterized by (x(t), y(t)) =
(sin(t), cos(t)) which is infinitely differentiable.

(e) Is a square C0 continuous?

• Answer: Unclear, since no parameterization has been specified. Parameterizations of the square
may or may not be C0.

(f) Is a square G0 continuous?

• Answer: Yes, because the curve is continuous/unbroken everywhere.

1

(g) Is a square C1 continuous?

• Answer: Unclear, since no parameterization has been specified. Parameterizations may or may
not be C1, even though there are corners.

(h) Is a square G1 continuous?

• Answer: No, because tangents to the geometric curve have direction discontinuities at the cor-
ners.

Problem 2: View Frustum Culling (10 pts)

“View frustum culling” is a technique to avoid drawing (or cull) geometry which is outside the view frustum.
To assist with culling, assume that each object has a bounding sphere with object-frame center position,
co = (cx, cy, cz, 1)T , and radius Ro. Imagine that you know you have an [l, r]× [b, t]× [f, n] orthographic
viewing volume, and you know each of the matrices (Mvp, Morth, Mcam, Mm) used to construct the
orthographic view transformation which maps points from object space to screen space:

ps =

xs

ys

zc
1

 = Mvp Morth Mcam Mm po = M

xo

yo

zo
1

 .

Derive a simple mathematical test to determine if an object is safely “off screen.”

• Answer: It suffices to transform the bounding sphere position to the camera frame, and consider
whether or not the sphere intersects the view volume. You can assume that the modeling transforma-
tion Mm is a rigid-body transformation, and thus that McamMm is a rigid-body transformation that
maps spheres to spheres. Given the sphere center in the camera frame,

ccam =

X
Y
Z
1

 = McamMmco, (1)

we can not cull the geometry if it is within the R = Ro-inflated view volume, [l − R, r + R] × [b −
R, t + R] × [f − R,n + R]. Therefore we must draw the geometry only if the following expression
is true:

(l −R ≤ X ≤ r +R) AND (b−R ≤ Y ≤ t+R) AND (f −R ≤ Z ≤ n+R). (2)

Extra: If you did not assume that Mm was a rigid-body transformation, then it suffices to consider
the comparison with but replacing the R by sR, where s is the two-norm of the 3-by-3 rotation-like
block of Mm.

2

Problem 3: Rasterizing Curves (15 pts)

In this question you will extend Bresenham’s midpoint algorithm for line rasterization to build a DDA-based
rasterizer for a quadratic Bézier curve. For simplicity you may assume that the curve is parameterized in
the form

y(x) = y0B0(x) + y1B1(x) + y2B2(x),

where

Bi(x) =
(

2
i

)
xi (1− x)2−i

are the quadratic Bernstein polynomials. You may even assume that the slope of the curve satisfies 0 ≤
y′(x) ≤ 1.

(a) First, derive the equations needed to use forward differencing to evaluate the Bézier curve at unit
∆x = 1 spacings without unnecessary multiplication. (Hint: First convert y(x) to monomial form.)

• Answer: First convert to monomial form as suggested:

y(x) = y0B0(x) + y1B1(x) + y2B2(x) (3)

= y0(1− x)2 + y12x(1− x) + y2x
2 (4)

= y0(1− 2x+ x2) + y1(2x− 2x2) + y2x
2 (5)

= (y0 − 2y1 + y2)x2 + 2(y1 − y0)x+ y0 (6)

≡ ax2 + bx+ c (7)

Forward differences are easier than for the cubic case done in class. The first difference is

∆y(x) = y(x+ 1)− y(x) (8)

= a[(x+ 1)2 − x2] + b[(x+ 1)− x] (9)

= a[2x+ 1] + b (10)

= 2ax+ (a+ b), (11)

and the second difference is

∆2y(x) = ∆y(x+ 1)−∆y(x) (12)

= 2a(x+ 1)− 2ax (13)

= 2a, (14)

with all higher differences zero. In summary, we must update ∆y each increment by just adding
2a to it,

∆y(x+ 1) = ∆y(x) + 2a, (15)

and we update y by adding ∆y(x),

y(x+ 1) = y(x) + ∆y(x). (16)

(b) Second, provide pseudocode for a simple DDA rasterizer from x = x0 to x = x1. You need not
consider shading, attribute interpolation, or antialiasing—you only need to “turn on” pixels using
appropriate calls to output(x,y).

3

• Answer: The pseudocode is identical to the original midpoint code, except with the line-based
DDA update for y replaced by the forward-difference update for the Bézier curve. Recall that
for line rasterization, each time we incremented x or y by 1, we updated the residual variable, d
= mx + b - y, by m or 1, respectively:

x = ceil(x0)
y = round(m*x + b)
d = m*(x + 1) + b - y
while (x < floor(x1))

if (d > 0.5)
y += 1
d -= 1

x += 1
d += m
output(x, y)

• The appropriate d variable for our problem is

d = d(x, y) = y(x)− y. (17)

Incrementing y will still decrement d by 1, however now incrementing x will use the forward-
difference update, ∆y(x). The pseudocode is as follows:

// INIT:
a2 = 2*a;
x = ceil(x0)
f = a*x*x + b*x + c; /// y(x)
Df = 2*a*x + (a+b); /// Delta y(x)
y = round(f)

// Evaluate d at x+1, first computing y(x+1) and Delta y(x+1):
f += Df;
Df += a2;
d = f - y; /// = y(x+1) - y

while (x < floor(x1))
if (d > 0.5)

y += 1
d -= 1

x += 1
d += Df;
Df += a2;
output(x, y)

4

Problem 4: Tracing rays through hexagonal subdivisions (12 pts)

(1,0)

(0,0)

(2,0)
(3,0)

(-1,0)
(-2,0)

(0,1)
(1,1)

(2,1)

(-1,1)
(-2,1)

(1,-1)
(0,-1)

(2,-1)
(3,-1)

(-1,-1)
(-2,-1)

(1,-2)

(0,-2)

(2,-2)
(3,-2)

(-1,-2) (1,-3)
(2,-3)

(3,-3)

(3,-4)

(0,2)
(-1,2)

(-2,2)

(-2,3)

2h

You have seen how to trace a ray through a square grid in 2D,
and even a voxel grid in 3D. In this question you will consider 2D
hexagonal grids. Analogous to rectangular grids, assume that the
hexagonal cells have an (i, j) indexing as shown in the figure. As-
sume that each hexagon’s parallel edges are 2h apart (see figure).

Propose an efficient pseudocode implementation to trace the
ray through an infinite hexagonal subdivision, making calls to
output(i,j) indices of hexagons traversed. For simplicity, as-
sume that the ray r(t) = e+ tv, t ≥ 0, starts at the center of cell
(i, j) = (0, 0) as shown in the figure. Ignore boundaries.

• Answer: There are three families of parallel lines associ-
ated with the normal directions

n0 = (sin(30o), cos(30o))T (18)

n1 = (sin(90o), cos(90o))T = (1, 0) (19)

n2 = (sin(150o), cos(150o))T . (20)

The signed time ∆t to travel a distance h in each of these directions is given by

τ0 = h/vTn0 (21)

τ1 = h/vTn1 (22)

τ2 = h/vTn2. (23)

Observe that crossing edges along each of the directions results in an (i, j) cell index update, (i, j)+δ,
given by

δ0 = sgn(τ0)(1, 0) (24)

δ1 = sgn(τ1)(0, 1) (25)

δ2 = sgn(τ2)(−1, 1). (26)

From our starting point at the center of cell (0, 0), we can
initialize t-distances to the nearest edges as

∆t0 = |τ0| (27)

∆t1 = |τ1| (28)

∆t2 = |τ2|. (29)

We will first cross an edge in the direction i given by

i = arg min
k

∆tk,

at which time we update ∆ti to be 2|τi|, but the two other di-
rections must have their times updated too. By observation,
the update rules (for j 6= i) are

∆tj ← (∆tj + |τj |) (mod 2|τj |).

5

Pseudocode to implement this HEX-WALK is as follows (mul-
tiplies by 2 can be avoided using additional precomputed
variables):

// INITIALIZE
n_0 = ...;
n_1 = ...;
n_2 = ...;
tau_0 = ...;
tau_1 = ...;
tau_2 = ...;
delta_0 = ...;
delta_1 = ...;
delta_2 = ...;
Dt_0 = ...;
Dt_1 = ...;
Dt_2 = ...;

(I,J) = (0,0);
output(I,J);

while (continue walk)
{

// Find crossed edge:
i = argmin_k Dt_k;

// Update cell indices:
(I,J) += delta_i;
output(I,J);

// Update Dt values:
for(j=0..2) {

if(j==i)
Dt_i = 2|tau_i|;

else
Dt_j = (Dt_j + |tau_j|) (mod 2|tau_j|);

}
}

}

6

Problem 5: Phong Tesselation (20 pts)

Recall that Phong Shading interpolates vertex normals across a triangle for smooth shading on low-resolution
meshes, i.e., the unnormalized surface normal at barycentric coordinate (u, v, w) (where w = 1− u− v) is
approximated by barycentrically interpolated vertex normals,

n′(u, v) = uni + vnj + wnk,

where the unit vertex normals are ni, nj and nk. Of course, since each triangle is still planar,

p(u, v) = upi + vpj + wpk, (30)

the piecewise planar shape is still apparent at silhouettes.

Recently, Boubekeur and Alexa [SIGGRAPH Asia 2008] introduced Phong Tesselation as a simple way
to use vertex normals to deform a triangle mesh to have smoother silhouettes (see Figures 1 and 2). In the
following, you will derive their formula for a curved triangle patch, p∗(u, v), and analyze surface continuity.

Figure 1: Phong Tesselation Examples: A triangle deformed with different vertex normals.

Triangle Mesh Phong Shading Phong Shading and Tesselation

Figure 2: Phong Tesselation

Answer the following four questions:

(a) Consider the plane passing though vertex i’s position, pi, and sharing the same normal, ni. Give an
expression for the orthogonal projection of a point p onto vertex i’s plane, hereafter denoted by πi(p).

7

• Answer: The component of v = (p−pi) along the normal is vTni. Therefore the component along
the surface is v − nin

T
i v, and so

πi(p) = pi + v − nin
T
i v (31)

= p− nin
T
i (p− pi) (32)

(b) The deformed position p∗(u, v) is simply the barycentrically interpolated projections of the undeformed
point p(u, v) onto the three vertex planes, i.e., the barycentric interpolation of πi(p(u, v)), πj(p(u, v)),
and πk(p(u, v)). Derive a polynomial expression for p∗(u, v) in terms of u, v and w—you can also write it
only in terms of u and v but it is messier. (Hint: Express your answer in terms of projected-vertex positions,
such as πi(pj).)

• Answer: The provided definition says that

p∗(u, v) = uπi(p(u, v)) + vπj(p(u, v)) + wπk(p(u, v)) (33)

= uπi (upi + vpj + wpk) + (34)

vπj (upi + vpj + wpk) + (35)

wπk (upi + vpj + wpk) (36)

= u2 πi(pi) + uvπi(pj) + uwπi(pk) + (37)

uvπj(pi) + v2 πj(pj) + vwπj(pk) + (38)

uwπk(pi) + vwπk(pj) + w2 πk(pk) (39)

= u2pi + v2pj + w2pk + (40)

uv(πi(pj) + πj(pi)) + (41)

vw(πj(pk) + πk(pj)) + (42)

uw(πk(pi) + πi(pk)). (43)

(c) What degree is this triangular bivariate polynomial patch, p∗(u, v)?

• Answer: From our derived formulae, it is clear that p∗(u, v) is a quadratic (or degree-2) polynomial
patch.

(Note: It is incorrect to state that “it is a quadratic patch since it has 3 control points” supposedly in
analogy with the 1D curve setting. Note that a planar triangle patch (30) also has 3 control points, but
is degree one.)

8

(d) Given a triangle mesh that is converted to these polynomial patches, consider the parametric continuity
of the resulting spline surface:

(i) Show that the surface is G0 continuous.

• Answer: Clearly the quadratic patch is G0 continuous within the triangle domain, so it remains
to show that it is continuous across patch boundaries. First, observe that the patch interpolates
vertices. Second, the fact that there are no cracks across edges follows from the fact that for
(u, v) coordinates on the edge the function p∗(u, v) only depends on the position and normal
values at the end-points of the edge. For example, on the edge with w = 0 we have

p∗(u, v) = u2pi + v2pj + uv(πi(pj) + πj(pi)) (44)

where πi only depends on the position and normal of vertex i. Therefore patches on either side
of the edge will share the same interface curve values, and the surface is G0 continuous.

(ii) Show that the surface is not G1 continuous.

• Answer: Clearly the quadratic patch is G1 continuous within the triangle domain, so it suffices
to consider the patch boundaries. We already know that edge-adjacent patches will share the
same interface curve, and therefore they will have the same directional derivative along the patch
edge. Therefore, we can try to show that the normals along the edges may differ by considering
derivatives along directions not parallel to the edge—since the normal is a cross product of such
partial derivatives. If this derivative depends on the opposite vertex data, then the normals will
not (in general) be continuous across the edge.
Another way to proceed is to consider the patch normal at a vertex, to see that it depends on
more than just the position/normal at that vertex, and therefore can not be the same as normals
of the adjacent patches. This would require taking two derivatives and a cross product.
For simplicity, let’s consider the edge case, and use the w = 0 edge. It suffices to show that the
∂p∗

∂w value on the w = 0 edge depends on the values at the opposite vertex, k. Differentiating
(43) we find that (for brevity, let ∂w ≡ ∂

∂w)

∂

∂w
p∗(u, v) =

∂u2

∂w
pi +

∂v2

∂w
pj +

∂w2

∂w
pk + (v

∂u

∂w
+ u

∂v

∂w
)(πi(pj) + πj(pi)) +

(w
∂v

∂w
+ v

∂w

∂w
)(πj(pk) + πk(pj)) + (w

∂u

∂w
+ u

∂w

∂w
)(πk(pi) + πi(pk))

= −2upi − 2vpj + 2wpk + (−v − u)(πi(pj) + πj(pi)) +
(−w + v)(πj(pk) + πk(pj)) + (−w + u)(πk(pi) + πi(pk))

Which on the edge w = 0 becomes

∂p∗

∂w

∣∣∣∣
w=0

= −2upi − 2vpj − (u+ v)(πi(pj) + πj(pi)) + (45)

v(πj(pk) + πk(pj)) + u(πk(pi) + πi(pk)), (46)

and since it depends on the position and normal of vertex k, the surface can not beG1 continuous.

9

