
Notes on the Polar Decomposition for animation

Steve Marschner

13 November 2014

Interpolation of transformations is a big topic in animation. The basic problem
is: a given object should have an affine transformation M0 at time 0 and a second
transformation M1 at time 1. The naı̈ve solution is to interpolate elementwise:

M

t

= (1� t)M1 + tM2

but this has some problems, in particular with transformations that involve rotation. For
example, if M0 and M1 are both rotations we might like for M

t

to also be a rotation.
But this won’t happen; a simple experiment demonstrates that the object will shrink,
then expand, as it moves from M0 to M1.

If we know a transformation is a rotation, there are good ways to deal with it: in
2D, compute the rotation angle and interpolate that; in 3D use quaternions, discussed in
the next lecture. Many systems make their lives easy by restricting all transformations
to the form

M = TRS

where T is a translation, R is a rotation (an orthogonal matrix), and S is an axis-aligned,
possibly nonuniform, scale (a diagonal matrix). Then one simply interpolates the parts
separately:

T

t

= interp linear(T0,T1, t)

R

t

= interp rotation(R0,R1, t)

S

t

= interp linear(S0,S1, t)

M

t

= T

t

R

t

S

t

using an appropriate method for the rotation, and simply linearly interpolating the oth-
ers.

But requiring the TRS form limits the transformations that can be represented.
(Count degrees of freedom: 3 each for T, R, and S does not add up to the 12 needed
for an arbitrary affine transformation.) And generally one needs to be able to handle
arbitrary matrices that came from somewhere else, and there are various good reasons
for wanting to use arbitrary matrices.

The point of these notes is that it’s possible to take matrices apart, “factored” or
“decomposed,” into a TRS-like form, even if they did not start out that way, so that
the benefits of interpolating rotation separately can be had without the constraint and
added complexity of keeping the three parts separate. Once we solve this matrix de-
composition problem, we interpolate the pieces separately and all is good.

1

When the matrix is actually a TRS matrix If someone had a translation, a rotation,
and a scale, but multipilied them together in an attempt to foil our interpolation efforts,
we don’t have to work that hard to fix the problem. First of all, the product RS has no
translation part, and multiplying on the left with T simply inserts the translation in the
upper-right corner of the matrix, where we can just read it off. So the only difficulty is
with the upper-left 3x3, which is the product of 3x3 rotation and scale matrices. (I’m
goint to be a little loose with notation and call both the 4x4 matrix and the 3x3 matrix
by the same name: in the 4x4 context it just gets a row and colum of zeros and a one
in the bottom-right corner.)

A rotation matrix R has three orthonormal columns, r1, r2, and r3. Multiplying this
by a scale on the right just changes the lengths of the columns:

2

4
| | |

r1 r2 r3
| | |

3

5

2

4
s1

s2
s3

3

5=

2

4
| | |

s1r1 s2r2 s3r3
| | |

3

5

They are still orthogonal (compute (RS)T (RS)), so we can just write down the three
lengths, normalize them, and we have R and S back.

The case where M is arbitrary But even though the TRS form is a common case,
I want to be able to handle any matrix that comes along. Not every 3x3 matrix can be
written as a rotation times a scale, but there is a convenient generalization. A linear
algebra tool known as the polar decomposition guarantees that any square matrix can
be written in the form

M = RS

where S is a symmetric matrix. The factors R and S are unique and depend in a nice
and smooth way on M.

It turns out that symmetric matrices interpolate just fine by simple linear interpola-
tion, just as scales do. In fact, a symmetric matrix is really a scale anyway—it’s just
that, unless it’s diagonal, the scaling axes are not aligned with the coordinate axes. See
Section 6.1.6 in the textbook for a discussion.

So the polar decomposition gives us a TRS form where the S stands for “sym-
metric” rather than “scale” (or still for “scale” but with the understanding it might
not be axis-aligned). Combining the polar decomposition with the TRS interpolation
approach above leads to a well-behaved way to work with arbitrary matrices:

[T0,R0,S0] = polar

d

ecompose(M0)

[T1,R1,S1] = polar

d

ecompose(M1)

T

t

= interp linear(T0,T1, t)

R

t

= interp rotation(R0,R1, t)

S

t

= interp linear(S0,S1, t)

M

t

= T

t

R

t

S

t

2

Actually computing the polar decomposition In 2D it is easy to compute the polar
decomposition and it’s instructive to look at that case. We have M and are looking for
two matrices R and S that multiply to M:

M = RS or, R

T

M = S

I will find R first: R is a rotation that has the property that R

T

M is a symmetric matrix.
In 2D we can just write out in components:

R

T

M =


c s

�s c

�
m11 m12
m21 m22

�

=


cm11 + sm21 cm12 + sm22
�sm11 + cm21 �sm12 + cm22

�

where s = sinq and c = cosq . Think of turning a knob to adjust theta and watching for
the product to become symmetric. This happens when

cm12 + sm22 =�sm11 + cm21

s(m11 +m22) = c(m21 �m12)

s

c

= tanq =
m21 �m12

m11 +m22

q = tan�1
✓

m21 �m12

m11 +m22

◆

In practice the atan2 function is the right tool for this job; it is stable and works when
c = 0. Or you can compute c and s without trigonometry just by normalizing the vector
[m11 +m22,m21 �m12].

Once you have R you can compute S = R

T

M and you are home free!

Polar decomposition in more than 2D Of course in the 3D case this analysis doesn’t
work, but there is still a very simple iterative algorithm available, and you can find code
to compute it in egl.math.Matrix3.

3

