Animation

CS 4620 Lecture 21
What is animation?

• **Modeling** = specifying shape
 – using all the tools we’ve seen: hierarchies, meshes, curved surfaces…

• **Animation** = specifying shape as a function of time
 – just modeling done once per frame?
 – yes, but need smooth, concerted movement
Keyframes in hand-drawn animation

• End goal: a drawing per frame, with nice smooth motion
• “Straight ahead” is drawing frames in order (using a lightbox to see the previous frame or frames)
 – but it is hard to get a character to land at a particular pose at a particular time
• Instead use key frames to plan out the action
 – draw important poses first, then fill in the in-betweens

animation by Ollie Johnston, © Disney
Keyframes in computer animation

• Just as with hand-drawn animation, adjusting the model from scratch for every frame would be tedious and difficult
• Same solution: animator establishes the keyframes, software fills in the in-betweens
• Two key ideas of computer animation:
 – create high-level controls for adjusting geometry
 – interpolate these controls over time between keyframes
The most basic animation control

- Affine transformations position things in modeling
- Time-varying affine transformations move things around in animation
- A hierarchy of time-varying transformations is the main workhorse of animation
 - and the basic framework within which all the more sophisticated techniques are built
Keyframe animation

[Bryce Tutorial http://www.cadtutor.net/dd/bryce/anim/anim.html]
Interpolating transformations

• Move a set of points by applying an affine transformation
• How to animate the transformation over time?
 – Interpolate the matrix entries from keyframe to keyframe?

 This is fine for translations but bad for rotations
Parameterizing rotations

- **Euler angles**
 - rotate around x, then y, then z
 - nice and simple

\[f(\alpha, \beta, \gamma) = R_z(\gamma)R_y(\beta)R_x(\alpha) \]

- **Axis/angle**
 - specify axis to rotate around, then angle by which to rotate
 - multiply axis and angle to get a more compact form

\[f(a) = R_\hat{a}(||a||) \]
Problems

- Euler angles
 - gimbal lock (saw this before)
 - some rotations have many representations

- Axis/angle
 - multiple representations for identity rotation
 - even with combined rotation angle, making small changes near 180 degree rotations requires larger changes to parameters

- These resemble the problems with polar coordinates on the sphere
 - as with choosing poles, choosing the reference orientation for an object changes how the representation works
Animation

• Industry production process leading up to animation
• What animation is
• How animation works (very generally)
• Artistic process of animation
• Further topics in how it works
Approaches to animation

• Straight ahead
 – Draw/animate one frame at a time
 – Can lead to spontaneity, but is hard to get exactly what you want

• Pose-to-pose
 – Top-down process:
 *Plan shots using storyboards
 *Plan key poses first
 *Finally fill in the in-between frames
Pose-to-pose animation planning

- First work out poses that are key to the story
- Next fill in animation in between
Keyframe animation

• Keyframing is the technique used for pose-to-pose animation
 – Head animator draws key poses—just enough to indicate what the motion is supposed to be
 – Assistants do “in-betweening” and draws the rest of the frames
 – In computer animation substitute “user” and “animation software”
 – Interpolation is the principal operation
Walk cycle
Controlling geometry conveniently

• Could animate by moving every control point at every keyframe
 – This would be labor intensive
 – It would also be hard to get smooth, consistent motion

• Better way: animate using smaller set of meaningful degrees of freedom (DOFs)
 – Modeling DOFs are inappropriate for animation
 E.g. “move one square inch of left forearm”
 – Animation DOFs need to be higher level
 E.g. “bend the elbow”
Character with DOFs

A visual description of the possible movements for the squirrel
Rigged character

- Surface is deformed by a set of *bones*
- Bones are in turn controlled by a smaller set of *controls*
- The controls are useful, intuitive DOFs for an animator to use
The artistic process of animation

• What are animators trying to do?
 – Important to understand in thinking about what tools they need

• Basic principles are universal across media
 – 2D hand-drawn animation
 – 2D and computer animation
 – 3D computer animation

• Widely cited set of principles laid out by Frank Thomas and Ollie Johnston in *The Illusion of Life* (1981)

• The following slides follow Michael Comet’s examples:

 www.comet-cartoons.com
Animation principles: timing

- Speed of an action is crucial to the impression it makes
 - examples with same keyframes, different times:

 60 fr: looking around 30 fr: “no” 5 fr: just been hit
Animation principles: timing

- Speed of an action is crucial to the impression it makes
 - examples with same keyframes, different times:

 60 fr: looking around
 30 fr: “no”
 5 fr: just been hit
Animation principles: ease in/out

- Real objects do not start and stop suddenly
 - animation parameters shouldn’t either

 ![Image of animation effects]

 straight linear interp. ease in/out

 - a little goes a long way (just a few frames acceleration or deceleration for “snappy” motions)
Animation principles: ease in/out

- Real objects do not start and stop suddenly
 - animation parameters shouldn’t either

 ![straight linear interp.](image1) ![ease in/out](image2)

 - a little goes a long way (just a few frames acceleration or deceleration for “snappy” motions)
Animation principles: moving in arcs

- Real objects also don’t move in straight lines
 - generally curves are more graceful and realistic
Animation principles: moving in arcs

- Real objects also don’t move in straight lines
 - generally curves are more graceful and realistic
Animation principles: anticipation

• Most actions are preceded by some kind of “wind-up”
Animation principles: anticipation

• Most actions are preceded by some kind of “wind-up”
Animation principles: exaggeration

- Animation is not about exactly modeling reality
- Exaggeration is very often used for emphasis
Animation principles: exaggeration

- Animation is not about exactly modeling reality
- Exaggeration is very often used for emphasis
Animation principles: squash & stretch

- Objects do not remain perfectly rigid as they move
- Adding stretch with motion and squash with impact:
 - models deformation of soft objects
 - indicates motion by simulating exaggerated “motion blur”

[www.animdesk.com]
Animation principles: follow through

- We’ve seen that objects don’t start suddenly
- They also don’t stop on a dime
Animation principles: follow through

• We’ve seen that objects don’t start suddenly
• They also don’t stop on a dime
Anim. principles: overlapping action

- Usually many actions are happening at once
Animation principles: staging

- Want to produce clear, good-looking 2D images
 - need good camera angles, set design, and character positions
Principles at work: weight
Principles at work: weight
Extended example: Luxo, Jr.
Computer-generated motion

• Interesting aside: many principles of character animation follow indirectly from physics
• Anticipation, follow-through, and many other effects can be produced by simply minimizing physical energy
• Seminal paper: “Spacetime Constraints” by Witkin and Kass in SIGGRAPH 1988
Controlling shape for animation

• Start with *modeling DOFs* (control points)
• *Deformations* control those DOFs at a higher level
 – Example: move first joint of second finger on left hand
• *Animation controls* control *those* DOFs at a higher level
 – Example: open/close left hand
• Both cases can be handled by the same kinds of deformers
Interpolating transformations

• Linear interpolation of matrices is not effective
 – leads to shrinkage when interpolating rotations
• One approach: always keep transformations in a canonical form (e.g. translate-rotate-scale)
 – then the pieces can be interpolated separately
 – rotations stay rotations, scales stay scales, all is good
• But you might be faced with just a matrix. What then?
Decomposing transformations

• A product $M = TRS$ is not hard to take apart
 – translation sits in the top right
 – RS still has three orthogonal columns (prove?)
 – scale factors are the lengths of the columns

• But that doesn’t cover everything
 – count DOFs: $3 + 3 + 3 < 12$

• If we allow S to be a scale along arbitrary axes then it does work—$M = TRS$ where
 – T is a translation
 – R is a rotation
 – S is a symmetric matrix (positive definite if no reflection)
 – linear algebra name: polar decomposition (at least the $A = RS$ part)
 Demo: polar interpolation in 2D

• To interpolate:
 – decompose into T (2-vector), R (just an angle), S (2x2 symmetric)
 – interpolate everything linearly
 – recompose matrix from new translation, angle, and symmetric matrix
Parameterizing rotations

• Euler angles
 – Rotate around x, then y, then z
 – Problem: gimbal lock
 \textit{If two axes coincide, you lose one DOF}

• Unit quaternions
 – A 4D representation (like 3D unit vectors for 2D sphere)
 – Good choice for interpolating rotations

• These are first examples of motion control
 – Matrix = deformation
 – Angles/quaternion = animation controls
What is a rotation?

• Think of the set of possible orientations of a 3D object
 – you get from one orientation to another by rotating
 – if we agree on some starting orientation, rotations and orientations are pretty much the same thing

• It is a smoothly connected three-dimensional space
 – how can you tell? For any orientation, I can make a small rotation around any axis (pick axis = 2D, pick angle = 1D)

• This set is a subset of linear transformations called SO(3)
 – O for orthogonal, S for “special” (determinant +1), 3 for 3D
Calculating with rotations

• Representing rotations with numbers requires a function
 \[f : \mathbb{R}^n \rightarrow SO(3) \]

• The situation is analogous to representing directions in 3-space
 – there we are dealing with the set \(S^2 \), the two-dimensional sphere (I mean the sphere is a 2D surface)
 – like \(SO(3) \) it is very symmetric; no directions are specially distinguished
Warm-up: spherical coordinates

- We can use latitude and longitude to parameterize the 2-sphere (aka. directions in 3D), but with some annoyances
 - the poles are special, and are represented many times
 - if you are at the pole, going East does nothing
 - near the pole you have to change longitude a lot to get anywhere
 - traveling along straight lines in (latitude, longitude) leads to some pretty weird paths on the globe

 you are standing one mile from the pole, facing towards it; to get to the point 2 miles ahead of you the map tells you to turn right and walk 3.14 miles along a latitude line...

- Conclusion: use unit vectors instead
Warm-up: unit vectors

• When we want to represent directions we use unit vectors: points that are literally on the unit sphere in \mathbb{R}^3
 – now no points are special
 – every point has a unique representation
 – equal sized changes in coordinates are equal sized changes in direction

• Down side: one too many coordinates
 – have to maintain normalization
 – but normalize() is a simple and easy operation
Warm-up: interpolating directions

- Interpolating in the space of 3D vectors is well behaved
- Simple computation: interpolate linearly and normalize
 - this is what we do all the time, e.g. with normals for fragment shading
 \[\hat{\mathbf{v}}(t) = \text{normalize}((1 - t)\mathbf{v}_0 + t\mathbf{v}_1) \]
 - but for far-apart endpoints the speed is uneven (faster towards the middle)
- For constant speed: spherical linear interpolation
 - build basis \(\{\mathbf{v}_0, \mathbf{w}\} \) from \(\mathbf{v}_0 \) and \(\mathbf{v}_1 \)
 - interpolate angle from 0 to \(\theta \)
 - (slicker way in a few slides)
 \[\mathbf{w} = \hat{\mathbf{v}}_1 - (\hat{\mathbf{v}}_0 \cdot \hat{\mathbf{v}}_1)\hat{\mathbf{v}}_0 \]
 \[\hat{\mathbf{w}} = \mathbf{w}/\|\mathbf{w}\| \]
 \[\theta = \arccos(\hat{\mathbf{v}}_0 \cdot \hat{\mathbf{v}}_1) \]
 \[\hat{\mathbf{v}}(t) = (\cos t\theta)\hat{\mathbf{v}}_0 + (\sin t\theta)\hat{\mathbf{w}} \]
Warm-up: rays vs. lines

• The set of directions (unit vectors) describes the set of rays leaving a point

• The set of lines through a point is a bit different
 – no notion of “forward” vs. “backward”

• Would probably still represent using unit vectors
 – but every line has exactly two representations, \mathbf{v} and $-\mathbf{v}$
Quaternions

• A quaternion is a 4-vector
 \[q = (w, x, y, z) \in \mathbb{H} \]

• We tend to think of it as a scalar and a 3-vector
 \[q = (s, \mathbf{v}) \text{ where } s = w \text{ and } \mathbf{v} = (x, y, z) \]
 – alternate notation: \[q = s + \mathbf{v} \]

• Unit quaternions are unit 4-vectors:
 \[w^2 + x^2 + y^2 + z^2 = 1, \text{ or } s^2 + \|\mathbf{v}\|^2 = 1 \]
 – think of \(s \) and \(\|\mathbf{v}\| \) as sin and cos of an angle:
 \[q = \cos \psi + \hat{\mathbf{v}} \sin \psi \]

• They can represent rotations in an axis-angle-like way
 – direction of \(\mathbf{v} \) tells you the axis of rotation
 – \(s \) and \(\|\mathbf{v}\| \) tell you the angle of rotation
Quaternions and rotations

There is a natural association between the unit quaternion

$$\cos \psi + \hat{v} \sin \psi \in S^3 \subset \mathbb{H}$$

and the 3D axis-angle rotation

$$R_{\hat{v}}(\theta) \in SO(3)$$

where $$\theta = 2\psi$$.

![Diagram of unit 3-sphere in 4D space]

[Wikimedia Commons user Geek3]
Unit quaternions and axis/angle

• We can write down a parameterization of 3D rotations using unit quaternions (points on the 3-sphere)

\[f : S^3 \subset H \rightarrow SO(3) \]
\[: \cos \psi + \hat{\mathbf{v}} \sin \psi \mapsto R_{\hat{\mathbf{v}}}(2\psi) \]
\[: (w, x, y, z) \mapsto \begin{bmatrix}
 w^2 + x^2 - y^2 - z^2 & 2(xy - wz) & 2(xz + wy) \\
 2(xy + wz) & w^2 - x^2 + y^2 - z^2 & 2(yz - wx) \\
 2(xz - wy) & 2(yz + wx) & w^2 - x^2 - y^2 + z^2
\end{bmatrix} \]

• This mapping is wonderfully uniform:
 – is exactly 2-to-1 everywhere
 – has constant speed in all directions
 – has constant Jacobian (does not distort “volume”)
 – maps shortest paths to shortest paths
 – and… it comes with a multiplication operation (not mentioned today)
Why Quaternions?

- Fast, few operations, not redundant
- Numerically stable for incremental changes
- Composes rotations nicely
- Convert to matrices at the end
- Biggest reason: spherical interpolation
Interpolating between quaternions

- Why not linear interpolation?
 - Need to be normalized
 - Does not have constant rate of rotation

\[\frac{(1 - \alpha)x + \alpha y}{\|(1 - \alpha)x + \alpha y\|} \]
Spherical Linear Interpolation

- Intuitive interpolation between different orientations
 - Nicely represented through quaternions
 - Useful for animation
 - Given two quaternions, interpolate between them

- Shortest path between two points on sphere
 Geodesic, on Great Circle
Spherical linear interpolation ("slerp")

\[\alpha + \beta = \psi \]
\[\mathbf{v}(t) = w_0 \mathbf{v}_0 + w_1 \mathbf{v}_1 \]

\[
\frac{\sin \alpha}{w_1} = \frac{\sin \beta}{w_0} = \frac{\sin(\pi - \psi)}{1} = \sin \psi
\]

\[w_0 = \frac{\sin \beta}{\sin \psi} \]
\[w_1 = \frac{\sin \alpha}{\sin \psi} \]

\[\psi = \cos^{-1}(\mathbf{v}_0 \cdot \mathbf{v}_1) \]
Spherical linear interpolation ("slerp")

\[\alpha + \beta = \psi \]
\[\mathbf{v}(t) = w_0 \mathbf{v}_0 + w_1 \mathbf{v}_1 \]
\[\frac{\sin \alpha}{w_1} = \frac{\sin \beta}{w_0} = \frac{\sin(\pi - \psi)}{1} = \sin \psi \]
\[w_0 = \frac{\sin \beta}{\sin \psi} \]
\[w_1 = \frac{\sin \alpha}{\sin \psi} \]
\[\psi = \cos^{-1}(\mathbf{v}_0 \cdot \mathbf{v}_1) \]
Spherical linear interpolation ("slerp")

\[\alpha + \beta = \psi \]
\[\mathbf{v}(t) = w_0 \mathbf{v}_0 + w_1 \mathbf{v}_1 \]
\[\frac{\sin \alpha}{w_1} = \frac{\sin \beta}{w_0} = \frac{\sin(\pi - \psi)}{1} = \sin \psi \]
\[w_0 = \frac{\sin \beta}{\sin \psi} \]
\[w_1 = \frac{\sin \alpha}{\sin \psi} \]
\[\psi = \cos^{-1}(\mathbf{v}_0 \cdot \mathbf{v}_1) \]
Quaternion Interpolation

• Spherical linear interpolation naturally works in any dimension
• Traverses a great arc on the sphere of unit quaternions
 – Uniform angular rotation velocity about a fixed axis

\[\psi = \cos^{-1}(q_0 \cdot q_1) \]

\[q(t) = \frac{q_0 \sin(1 - t)\psi + q_1 \sin t\psi}{\sin \psi} \]
Practical issues

• When angle gets close to zero, estimation of Ψ is inaccurate
 – slerp naturally approaches linear interpolation for small Ψ
 – so switch to linear interpolation when $q_0 \approx q_1$.

• q is same rotation as $-q$
 – if $q_0 \cdot q_1 > 0$, slerp between them
 – else, slerp between q_0 and $-q_1$
Hierarchies and articulated figures

• Luxo as an example
 – small number of animation controls control many transformations
 – constraint: the joints hold together

• Some operations are tricky with hierarchies
 – how to ensure lampshade touches ball?

• In mechanics, the relationship between DOFs and 3D pose is kinematics

• Robotics as source of math. Methods
 – robots are transformation hierarchies
 – forward kinematics
 – inverse kinematics
Forward Kinematics

Inverse Kinematics
Forward Kinematics

- Articulated body
 - Hierarchical transforms
 - Comes from robotics
Rigid Links and Joint Structure

- Links connected by joints
 - Joints are purely rotational (single DOF)
 - Links form a tree (no loops)
 - End links have end effectors
Articulation in robotics

a. rectangular or cartesian
b. cylindrical or post-type
c. spherical or polar
d. joint-arm or articulated
e. SCARA (selective compliance assembly robot arm)
Basic surface deformation methods

• Mesh skinning: deform a mesh based on an underlying skeleton
• Blend shapes: make a mesh by combining several meshes
• Both use simple linear algebra
 – Easy to implement—first thing to try
 – Fast to run—used in games
• The simplest tools in the offline animation toolbox
Mesh skinning

- A simple way to deform a surface to follow a skeleton
Mesh skinning math: setup

- Surface has control points p_i
 - Triangle vertices, spline control points, subdiv base vertices
- Each bone has a transformation matrix M_j
 - Normally a rigid motion
- Every point–bone pair has a weight w_{ij}
 - In practice only nonzero for small # of nearby bones
 - The weights are provided by the user
Mesh skinning math

- Deformed position of a point is a weighted sum
 - of the positions determined by each bone’s transform alone
 - weighted by that vertex’s weight for that bone

\[p'_i = \sum_j w_{ij} M_j p_i \]
Mesh skinning

- Simple and fast to compute
 - Can even compute in the vertex stage of a graphics pipeline
- Used heavily in games
- One piece of the toolbox for offline animation
 - Many other deformers also available
Mesh skinning: classic problems

• Surface collapses on the inside of bends and in the presence of strong twists
 – Average of two rotations is not a rotation!
 – Add more bones to keep adjacent bones from being too different, or change the blending rules.
Blend shapes

- Another very simple surface control scheme
- Based on interpolating among several key poses
 - Aka. blend shapes or morph targets
Blend shapes math

- Simple setup
 - User provides key shapes—that is, a position for every control point in every shape: p_{ij} for point i, shape j
 - Per frame: user provides a weight w_j for each key shape

 Must sum to 1.0

- Computation of deformed shape

 $p'_i = \sum_j w_j p_{ij}$

- Works well for relatively small motions
 - Often used for facial animation
 - Runs in real time; popular for games
Motion capture

• A method for creating complex motion quickly: measure it from the real world

[thanks to Zoran Popović for many visuals]
Motion capture in movies
Motion capture in movies
Motion capture in games
Magnetic motion capture

- Tethered
- Nearby metal objects cause distortions
- Low freq. (60Hz)
Mechanical motion capture

- Measures joint angles directly
- Works in any environment
- Restricts motion
Optical motion capture

• Passive markers on subject

Retroreflective markers

Cameras with IR illuminators

• Markers observed by cameras
 – Positions via triangulation
Optical motion capture

- 8 or more cameras
- Restricted volume
- High frequency (240Hz)
- Occlusions are troublesome
From marker data to usable motion

- Motion capture system gives inconvenient raw data
 - Optical is “least information” case: accurate position but:

 Which marker is which?

 Where are the markers relative to the skeleton?

\[(X_0, Y_0, Z_0)\]
\[(X_1, Y_1, Z_1)\]
\[(X_2, Y_2, Z_2)\]
Motion capture data processing

• Marker identification: which marker is which
 – Start with standard rest pose
 – Track forward through time (but watch for markers dropping out due to occlusion!)

• Calibration: match skeleton, find offsets to markers
 – Use a short sequence that exercises all DOFs of the subject
 – A nonlinear minimization problem

• Computing joint angles: explain data using skeleton DOFs
 – A inverse kinematics problem per frame!
Motion capture in context

- Mocap data is very realistic
 - Timing matches performance exactly
 - Dimensions are exact

- But it is not enough for good character animation
 - Too few DOFs
 - Noise, errors from nonrigid marker mounting
 - Contains no exaggeration
 - Only applies to human-shaped characters

- Therefore mocap data is generally a starting point for skilled animators to create the final product