Subdivision overview

CS4620 Lecture 20
Introduction: corner cutting

- Piecewise linear curve too jagged for you? Lop off the corners!
 - results in a curve with twice as many corners
- Still too jagged? Cut off the new corners
 - process converges to a smooth curve
 - Chaikin’s algorithm

http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm
Introduction: corner cutting

- Piecewise linear curve too jagged for you? Lop off the corners!
 - results in a curve with twice as many corners

- Still too jagged? Cut off the new corners
 - process converges to a smooth curve
 - Chaikin’s algorithm

http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm
Introduction: corner cutting

• Piecewise linear curve too jagged for you? Lop off the corners!
 – results in a curve with twice as many corners

• Still too jagged? Cut off the new corners
 – process converges to a smooth curve
 – Chaikin’s algorithm

http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm
Introduction: corner cutting

• Piecewise linear curve too jagged for you? Lop off the corners!
 – results in a curve with twice as many corners

• Still too jagged? Cut off the new corners
 – process converges to a smooth curve
 – Chaikin’s algorithm

http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm
Introduction: corner cutting

- Piecewise linear curve too jagged for you? Lop off the corners!
 - results in a curve with twice as many corners
- Still too jagged? Cut off the new corners
 - process converges to a smooth curve
 - Chaikin’s algorithm

http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm
Corner cutting in equations

- New points are linear combinations of old ones
- Different treatment for odd-numbered and even-numbered points.

\[
p_{2i}^k = \frac{3p_i^{k-1} + p_{i+1}^{k-1}}{4}
\]
\[
p_{2i+1}^k = \frac{p_i^{k-1} + 3p_{i+1}^{k-1}}{4}
\]
Spline-splitting math for B-splines

- Can use spline-matrix math from previous lecture to split a B-spline segment in two at $s = t = 0.5$.
- Result is especially nice because the rules for adjacent segments agree (not true for all splines).

\[
S_L = \begin{bmatrix}
s^3 \\
s^2 \\
s \\
1
\end{bmatrix}
\]

\[
P_L = M^{-1}S_LMP
\]

\[
P_R = M^{-1}S_RMP
\]

\[
P_L = \begin{bmatrix}
4 & 4 & 0 & 0 \\
1 & 6 & 1 & 0 \\
0 & 4 & 4 & 0 \\
0 & 1 & 6 & 1
\end{bmatrix}
\]

\[
P_R = \begin{bmatrix}
1 & 6 & 1 & 0 \\
0 & 4 & 4 & 0 \\
0 & 1 & 6 & 1 \\
0 & 0 & 4 & 4
\end{bmatrix}
\]
Subdivision for B-splines

- Control vertices of refined spline are linear combinations of the c.v.s of the coarse spline
Drawing a picture of the rule

- Conventionally illustrate subdivision rules as a “mask” that you match against the neighborhood
 - often implied denominator = sum of weights

- B-spline
 - even
 - odd

- Corner-cutting
 - even
 - odd
Cubic B-Spline

\[
\begin{align*}
&\frac{1}{8} & \frac{6}{8} & \frac{1}{8} \\
&\frac{4}{8} & \frac{4}{8}
\end{align*}
\]

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

\[
\begin{align*}
\frac{4}{8} & \quad \frac{1}{8} \\
\quad & \quad \frac{6}{8} \\
\quad & \quad \frac{1}{8}
\end{align*}
\]

odd

\[
\begin{align*}
\frac{4}{8} & \quad \frac{1}{8} \\
\frac{6}{8} & \quad \frac{1}{8}
\end{align*}
\]
even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

\[
\begin{align*}
\text{odd} & : \quad \frac{4}{8} \quad \frac{4}{8} \\
\text{even} & : \quad \frac{1}{8} \quad \frac{6}{8} \quad \frac{1}{8}
\end{align*}
\]
Cubic B-Spline

\[\frac{4}{8} \quad \frac{4}{8} \quad \frac{1}{8} \quad \frac{6}{8} \quad \frac{1}{8} \quad \frac{1}{8}\]

odd \hspace{1cm} even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Cubic B-Spline

odd

even

[Stanford CS468 Fall 2010 slides]
Subdivision curves

- Key idea: let go of the polynomials as the definition of the curve, and let the refinement rule define the curve
- Curve is defined as the *limit of a refinement process*
 - properties of curve depend on the rules
 - some rules make polynomial curves, some don’t
 - complexity shifts from implementations to proofs
Playing with the rules

• Once a curve is defined using subdivision we can customize its behavior by making exceptions to the rules.

• Example: handle endpoints by simply using the mask [1] at that point.

• Resulting curve is a uniform B-spline in the middle, but near the exceptional points it is something different.
 – it might not be a polynomial
 – but it is still linear, still has basis functions
 – the three coordinates of a surface point are still separate
From curves to surfaces

Subdivision defines a smooth curve or surface as the limit of a sequence of successive refinements.

[Stanford CS468 Fall 2010 slides]
Subdivision surfaces

Figure 2.2: Example of subdivision for a surface, showing 3 successive levels of refinement. On the left an initial triangular mesh approximating the surface. Each triangle is split into 4 according to a particular subdivision rule (middle). On the right the mesh is subdivided in this fashion once again.
Generalizing from curves to surfaces

• Two parts to subdivision process

• Subdividing the mesh (computing new topology)
 – For curves: replace every segment with two segments
 – For surfaces: replace every face with some new faces

• Positioning the vertices (computing new geometry)
 – For curves: two rules (one for odd vertices, one for even)
 • New vertex’s position is a weighted average of positions of old vertices that are nearby along the sequence
 – For surfaces: two kinds of rules (still called odd and even)
 • New vertex’s position is a weighted average of positions of old vertices that are nearby in the mesh
Subdivision of meshes

- Quadrilaterals
 - Catmull-Clark 1978
- Triangles
 - Loop 1987

Face split for quads

Face split for triangles
Loop regular rules
Catmull-Clark regular rules
Creases

- With splines, make creases by turning off continuity constraints
- With subdivision surfaces, make creases by marking edges “sharp”
 - use different rules for vertices with sharp edges
 - these rules produce B-splines that depend only on vertices along crease

![Crease and boundary](image)

- a. Masks for odd vertices
 - Crease and boundary
 - 1/2
 - 1/2

- b. Masks for even vertices
 - 1/8
 - 3/4
 - 1/8

[Schröder & Zorin SIGGRAPH 2000 course 23]
Boundaries

• At boundaries the masks do not work
 – mesh is not manifold; edges do not have two triangles

• Solution: same as crease
 – shape of boundary is controlled only by vertices along boundary
Extraordinary vertices

- Vertices that don’t have the “standard” valence
- Unavoidable for most topologies
- Difference from splines
 - treatment of extraordinary vertices is really the only way subdivision surfaces are different from spline patches
Full Loop rules (triangle mesh)

\[\beta = \frac{5}{8} - \frac{(3 + 2 \cos(2\pi/n))^2}{64} \]

Crease and boundary

a. Masks for odd vertices
b. Masks for even vertices
Full Catmull-Clark rules (quad mesh)

Mask for a face vertex

\[
\begin{array}{cc}
\frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} \\
\end{array}
\]

\textit{Interior}

\[\beta = \frac{3}{2k}; \quad \gamma = \frac{1}{4k}\]

Mask for an edge vertex

\[
\begin{array}{cc}
\frac{3}{8} & \frac{3}{8} \\
\frac{1}{16} & \frac{1}{16} \\
\end{array}
\]

Mask for a boundary odd vertex

\[
\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{8} & \frac{1}{8} \\
\end{array}
\]

a. Masks for odd vertices

b. Mask for even vertices

[Schröder & Zorin SIGGRAPH 2000 course 23]
Loop Subdivision Example

control polyhedron
Loop Subdivision Example

refined control polyhedron
Loop Subdivision Example

odd subdivision mask
Loop Subdivision Example

subdivision level 1
Loop Subdivision Example

even subdivision mask
(ordinary vertex)
Loop Subdivision Example

subdivision level 1
Loop Subdivision Example

even subdivision mask (extraordinary vertex)
Loop Subdivision Example

subdivision level 1
Loop Subdivision Example

subdivision level 1
Loop Subdivision Example

subdivision level 2
Loop Subdivision Example

subdivision level 3
Loop Subdivision Example

subdivision level 4
Loop Subdivision Example

limit surface
Relationship to splines

• In regular regions, behavior is identical
• At extraordinary vertices, achieve C^1
 – near extraordinary, different from splines
• Linear everywhere
 – mapping from parameter space to 3D is a linear combination of the control points
 – “emergent” basis functions per control point
 • match the splines in regular regions
 • “custom” basis functions around extraordinary vertices
Loop vs. Catmull-Clark
Loop vs. Catmull-Clark

Loop

Catmull-Clark
Loop vs. Catmull-Clark

Loop
(after splitting faces)

Catmull-Clark
Loop with creases

(a-d) Loop’s subdivision scheme: control mesh, meshes after 1 and 2 subdivision steps, and smooth limit surface

(c-h) Our piecewise smooth subdivision scheme: tagged control mesh, meshes after 1 and 2 subdivision steps, and piecewise smooth limit surface
Catmull-Clark with creases
Variable sharpness creases

- **Idea:** subdivide for a few levels using the crease rules, then proceed with the normal smooth rules.
- **Result:** a soft crease that gets sharper as we increase the number of levels of sharp subdivision steps.
Geri’s Game

• Pixar short film to test subdivision in production
 – Catmull-Clark (quad mesh) surfaces
 – complex geometry
 – extensive use of creases
 – subdivision surfaces to support cloth dynamics