Texture Mapping

CS 4620 Lecture 12
Texture mapping

- Objects have properties that vary across the surface
Texture Mapping

- So we make the shading parameters vary across the surface
Texture mapping

• Adds visual complexity; makes appealing images
Texture mapping

• Color is not the same everywhere on a surface
 – one solution: multiple primitives

• Want a function that assigns a color to each point
 – the surface is a 2D domain, so that is essentially an image
 – can represent using any image representation
 – raster texture images are very popular
A first definition

Texture mapping: a technique of defining surface properties (especially shading parameters) in such a way that they vary as a function of position on the surface.

- This is very simple!
 - but it produces complex-looking effects
Examples

• Wood gym floor with smooth finish
 – diffuse color k_D varies with position
 – specular properties k_S, n are constant

• Glazed pot with finger prints
 – diffuse and specular colors k_D, k_S are constant
 – specular exponent n varies with position

• Adding dirt to painted surfaces

• Simulating stone, fabric, …
 – to approximate effects of small-scale geometry
 • they look flat but are a lot better than nothing
Mapping textures to surfaces

• Usually the texture is an image (function of \(u, v \))
 – the big question of texture mapping: where on the surface does the image go?
 – obvious only for a flat rectangle the same shape as the image
 – otherwise more interesting
Mapping textures to surfaces

• “Putting the image on the surface”
 – this means we need a function f that tells where each point on the image goes
 – this looks a lot like a parametric surface function
 – for parametric surfaces you get f for free
Texture coordinate functions

• Non-parametrically defined surfaces: more to do
 – can’t assign texture coordinates as we generate the surface
 – need to have the inverse of the function f

• Texture coordinate fn.
 \[\phi : S \rightarrow \mathbb{R}^2 \]
 – for a vtx. at p
 get texture at $\phi(p)$
Texture coordinate functions

• Define texture image as a function

\[T : D \rightarrow C \]

– where \(C \) is the set of colors for the diffuse component

• Diffuse color (for example) at point \(p \) is then

\[k_D(p) = T(\phi(p)) \]
Examples of coordinate functions

- A rectangle
 - image can be mapped directly, unchanged
Examples of coordinate functions

- For a sphere: latitude-longitude coordinates
 - ϕ maps point to its latitude and longitude
Examples of coordinate functions

- A parametric surface (e.g. spline patch)
 - surface parameterization gives mapping function directly
 (well, the inverse of the parameterization)
Examples of coordinate functions

• For non-parametric surfaces it is trickier
 – directly use world coordinates
• need to project one out
Examples of coordinate functions

- For non-parametric surfaces it is trickier
 - directly use world coordinates
- need to project one out
Examples of coordinate functions

- Non-parametric surfaces: project to parametric surface
Examples of coordinate functions

- Triangles
 - specify \((u,v)\) for each vertex
 - define \((u,v)\) for interior by linear interpolation
Texture coordinates on meshes

- Texture coordinates become per-vertex data like vertex positions
 - can think of them as a second position: each vertex has a position in 3D space and in 2D texture space

- How to come up with vertex \((u,v)\)s?
 - use any or all of the methods just discussed
 - in practice this is how you implement those for curved surfaces approximated with triangles
 - use some kind of optimization
 - try to choose vertex \((u,v)\)s to result in a smooth, low distortion map
Example: UVMapper

http://www.uvmapper.com
Texture coordinate functions

• Mapping from S to D can be many-to-one
 – that is, every surface point gets only one color assigned
 – but it is OK (and in fact useful) for multiple surface points to be mapped to the same texture point
 • e.g. repeating tiles

ϕ can be many-to-one, e.g. for a tiled texture.
3D textures

• Texture is a function of \((u, v, w)\)
 – can just evaluate texture at 3D surface point
 – good for solid materials
 – often defined procedurally
A refined definition

Texture mapping: a set of techniques for defining functions on surfaces, for a variety of uses.

- Let’s look at some examples of more general uses of texture maps.
Reflection mapping

• Early (earliest?) non-decal use of textures
• Appearance of shiny objects
 – Phong highlights produce blurry highlights for glossy surfaces.
 – A polished (shiny) object reflects a sharp image of its environment.
• The whole key to a shiny-looking material is providing something for it to reflect.

Figure 2. (a). A shiny sphere rendered under photographically acquired real-world illumination. (b). The same sphere rendered under illumination by a point light source.
Reflection mapping

• From ray tracing we know what we’d like to compute
 – trace a recursive ray into the scene—too expensive
• If scene is infinitely far away, depends only on direction
 – a two-dimensional function
Environment map

- A function from the sphere to colors, stored as a texture.

[Blinn & Newell 1976]
Spherical environment map

Hand with Reflecting Sphere. M. C. Escher, 1935. lithograph
Environment Maps

[Paul Debevec]
Cube environment map
Normal mapping

original mesh
4M triangles

simplified mesh
500 triangles

simplified mesh and normal mapping
500 triangles

[Paolo Cignoni]
Bump mapping
Displacement mapping

Geometry

Bump mapping

Displacement mapping
base subdivision surface

hand-painted displacement map (detail)

displaced surface

Paweł Filip
tolas.wordpress.com