Texture Mapping

CS 4620 Lecture 12

Texture mapping

• Objects have properties that vary across the surface

Texture Mapping

 So we make the shading parameters vary across the surface

Texture mapping

• Adds visual complexity; makes appealing images

Ē

Texture mapping

- Color is not the same everywhere on a surface
 - one solution: multiple primitives
- Want a function that assigns a color to each point
 - the surface is a 2D domain, so that is essentially an image
 - can represent using any image representation
 - raster texture images are very popular

A first definition

Texture mapping: a technique of defining surface properties (especially shading parameters) in such a way that they vary as a function of position on the surface.

- This is very simple!
 - but it produces complex-looking effects

Examples

- Wood gym floor with smooth finish
 - diffuse color k_D varies with position
 - specular properties k_S , n are constant
- Glazed pot with finger prints
 - diffuse and specular colors k_D , k_S are constant
 - specular exponent n varies with position
- Adding dirt to painted surfaces
- Simulating stone, fabric, ...
 - to approximate effects of small-scale geometry
 - they look flat but are a lot better than nothing

Mapping textures to surfaces

- Usually the texture is an image (function of u, v)
 - the big question of texture mapping: where on the surface does the image go?
 - obvious only for a flat rectangle the same shape as the image
 - otherwise more interesting

Mapping textures to surfaces

- "Putting the image on the surface"
 - this means we need a function f that tells where each point on the image goes
 - this looks a lot like a parametric surface function
 - for parametric
 surfaces you
 get f for free

Texture coordinate functions

- Non-parametrically defined surfaces: more to do
 - can't assign texture coordinates as we generate the surface
 - need to have the inverse of the function f
- Texture coordinate fn.

$$\phi: S \to \mathbb{R}^2$$

for a vtx. at **p**get texture at φ(**p**)

Texture coordinate functions

Define texture image as a function

$$T:D\to C$$

- where C is the set of colors for the diffuse component
- Diffuse color (for example) at point **p** is then

$$k_D(\mathbf{p}) = T(\phi(\mathbf{p}))$$

- A rectangle
 - image can be mapped directly, unchanged

[map: Peter H. Dana]

- For a sphere: latitude-longitude coordinates
 - $-\phi$ maps point to its latitude and longitude

- A parametric surface (e.g. spline patch)
 - surface parameterization gives mapping function directly (well, the inverse of the parameterization)

- For non-parametric surfaces it is trickier
 - directly use world coordinates
 - need to project one out

- For non-parametric surfaces it is trickier
 - directly use world coordinates
 - need to project one out

• Non-parametric surfaces: project to parametric surface

[Tito Pagan]

- Triangles
 - specify (u,v) for each vertex
 - define (u,v) for interior by linear interpolation

Texture coordinates on meshes

- Texture coordinates become per-vertex data like vertex positions
 - can think of them as a second position: each vertex has a position in 3D space and in 2D texure space
- How to come up with vertex (u,v)s?
 - use any or all of the methods just discussed
 - in practice this is how you implement those for curved surfaces approximated with triangles
 - use some kind of optimization
 - try to choose vertex (u,v)s to result in a smooth, low distortion map

Example: UVMapper

http://www.uvmapper.com

Texture coordinate functions

- Mapping from S to D can be many-to-one
 - that is, every surface point gets only one color assigned
 - but it is OK (and in fact useful) for multiple surface points to be mapped to the same texture point

e.g. repeating tiles

3D textures

• Texture is a function of (u, v, w)

can just evaluate texture at 3D surface point

- good for solid materials
- often defined procedurally

A refined definition

Texture mapping: a set of techniques for defining functions on surfaces, for a variety of uses.

 Let's look at some examples of more general uses of texture maps.

Reflection mapping

- Early (earliest?) non-decal use of textures
- Appearance of shiny objects
 - Phong highlights produce blurry highlights for glossy surfaces.
 - A polished (shiny) object reflects a sharp image of its environment.
- The whole key to a shiny-looking material is providing something for it to reflect.

Figure 2. (a). A shiny sphere rendered under photographically acquired real-world illumination. (b). The same sphere rendered under illumination by a point light source.

Reflection mapping

- From ray tracing we know what we'd like to compute
 - trace a recursive ray into the scene—too expensive
- If scene is infinitely far away, depends only on direction
 - a two-dimensional function

Environment map

• A function from the sphere to colors, stored as a texture.

Spherical environment map

Hand with Reflecting Sphere. M. C. Escher, 1935. lithograph
© 2013 Steve Marschner • 26

Environment Maps

[Paul Debevec]

[CS467 slides]

Cube environment map

Normal mapping

original mesh 4M triangles

simplified mesh 500 triangles

simplified mesh and normal mapping 500 triangles

[Paolo Cignoni]

Bump mapping

[Blinn 1978]

Cornell CS569 Spring 2008 Lecture 7 • 31

[CS467 slides]

Displacement mapping

Geometry

Bump mapping

Displacement mapping

Paweł Filip tolas.wordpress.com

Cornell CS569 Spring 2008 Lecture 7 • 33

