Rasterization

CS4620 Lecture 9
The graphics pipeline

• The standard approach to object-order graphics
• Many versions exist
 – software, e.g. Pixar’s REYES architecture
 • many options for quality and flexibility
 – hardware, e.g. graphics cards in PCs
 • amazing performance: millions of triangles per frame
• We’ll focus on an abstract version of hardware pipeline
• “Pipeline” because of the many stages
 – very parallelizable
 – leads to remarkable performance of graphics cards (many times the flops of the CPU at \(\sim 1/5 \) the clock speed)
Primitives

• Points
• Line segments
 – and chains of connected line segments
• Triangles
• And that’s all!
 – Curves? Approximate them with chains of line segments
 – Polygons? Break them up into triangles
 – Curved regions? Approximate them with triangles
• Trend has been toward minimal primitives
 – simple, uniform, repetitive: good for parallelism
Rasterization

• First job: enumerate the pixels covered by a primitive
 – simple, aliased definition: pixels whose centers fall inside

• Second job: interpolate values across the primitive
 – e.g. colors computed at vertices
 – e.g. normals at vertices
 – will see applications later on
Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside
Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside
Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels
Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels
Point sampling in action
Bresenham lines (midpoint alg.)

• Point sampling unit width rectangle leads to uneven line width
• Define line width parallel to pixel grid
• That is, turn on the single nearest pixel in each column
• Note that 45° lines are now thinner
Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner
Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner
Midpoint algorithm in action
Algorithms for drawing lines

- line equation:
 \[y = b + m \times x \]
- Simple algorithm: evaluate line equation per column
 - W.l.o.g. \(x_0 < x_1; \)
 - \(0 \leq m \leq 1 \)

\[
\begin{align*}
\text{for } x &= \text{ceil}(x_0) \text{ to floor}(x_1) \\
y &= b + m \times x \\
\text{output}(x, \text{round}(y))
\end{align*}
\]

\[y = 1.91 + 0.37 \times x \]
Optimizing line drawing

- Multiplying and rounding is slow
- At each pixel the only options are E and NE
- \(d = m(x + 1) + b - y \)
- \(d > 0.5 \) decides between E and NE
Optimizing line drawing

- \(d = m(x + 1) + b - y \)
- Only need to update \(d \) for integer steps in \(x \) and \(y \)
- Do that with addition

- Known as “DDA” (digital differential analyzer)
Midpoint line algorithm

\[x = \text{ceil}(x_0) \]
\[y = \text{round}(mx + b) \]
\[d = m(x + 1) + b - y \]
while \(x < \text{floor}(x_1) \)
 if \(d > 0.5 \)
 \[y += 1 \]
 \[d -= 1 \]
\[x += 1 \]
\[d += m \]
output(x, y)
Linear interpolation

• We often attach attributes to vertices
 – e.g. computed diffuse color of a hair being drawn using lines
 – want color to vary smoothly along a chain of line segments
• Recall basic definition
 – 1D: \(f(x) = (1 - \alpha) y_0 + \alpha y_1 \)
 – where \(\alpha = \frac{(x - x_0)}{(x_1 - x_0)} \)
• In the 2D case of a line segment, alpha is just the fraction of the distance from \((x_0, y_0)\) to \((x_1, y_1)\)
Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use DDA to interpolate

\[
\alpha = \mathbf{v} \cdot (\mathbf{q} - \mathbf{p}_0) / L \\
L = \mathbf{v} \cdot (\mathbf{p}_1 - \mathbf{p}_0)
\]
Linear interpolation

• Pixels are not exactly on the line
• Define 2D function by projection on line
 – this is linear in 2D
 – therefore can use DDA to interpolate

\[
\begin{align*}
\alpha &= v \cdot (q - p_0) / L \\
L &= v \cdot (p_1 - p_0)
\end{align*}
\]
Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use DDA to interpolate
Alternate interpretation

• We are updating d and α as we step from pixel to pixel
 – d tells us how far from the line we are
 – α tells us how far along the line we are

• So d and α are coordinates in a coordinate system oriented to the line
Alternate interpretation

- View loop as visiting all pixels the line passes through
 - Interpolate d and α for each pixel
 - Only output frag. if pixel is in band
- This makes linear interpolation the primary operation
Pixel-walk line rasterization

\[
x = \text{ceil}(x_0)\\
y = \text{round}(m \times x + b)\\
d = m \times x + b - y\\
\text{while } x < \text{floor}(x_1)\\
\quad \text{if } d > 0.5\\
\quad \quad y += 1; \ d -= 1;\\
\quad \text{else}\\
\quad \quad x += 1; \ d += m;\\
\quad \text{if } -0.5 < d \leq 0.5\\
\quad \quad \text{output}(x, y)
\]
Rasterizing triangles

• The most common case in most applications
 – with good antialiasing can be the only case
 – some systems render a line as two skinny triangles
• Triangle represented by three vertices
• Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization
 – walk from pixel to pixel over (at least) the polygon’s area
 – evaluate linear functions as you go
 – use those functions to decide which pixels are inside
Rasterizing triangles

- **Input:**
 - three 2D points (the triangle’s vertices in pixel space)
 - \((x_0, y_0); (x_1, y_1); (x_2, y_2)\)
 - parameter values at each vertex
 - \(q_{00}, \ldots, q_{0n}; q_{10}, \ldots, q_{1n}; q_{20}, \ldots, q_{2n}\)

- **Output:** a list of fragments, each with
 - the integer pixel coordinates \((x, y)\)
 - interpolated parameter values \(q_0, \ldots, q_n\)
Rasterizing triangles

• Summary
 1. evaluation of linear functions on pixel grid
 2. functions defined by parameter values at vertices
 3. using extra parameters to determine fragment set
Incremental linear evaluation

- A linear (affine, really) function on the plane is:
 \[q(x, y) = c_x x + c_y y + c_k \]

- Linear functions are efficient to evaluate on a grid:
 \[
 \begin{align*}
 q(x + 1, y) &= c_x (x + 1) + c_y y + c_k = q(x, y) + c_x \\
 q(x, y + 1) &= c_x x + c_y (y + 1) + c_k = q(x, y) + c_y
 \end{align*}
 \]
Incremental linear evaluation

linEval(xl, xh, yl, yh, cx, cy, ck) {

 // setup
 qRow = cx*xl + cy*yl + ck;

 // traversal
 for y = yl to yh {
 qPix = qRow;
 for x = xl to xh {
 output(x, y, qPix);
 qPix += cx;
 }
 qRow += cy;
 }
}

\[c_x = .005; c_y = .005; c_k = 0 \]
(image size 100x100)
Rasterizing triangles

- **Summary**
 1. evaluation of linear functions on pixel grid
 2. functions defined by parameter values at vertices
 3. using extra parameters to determine fragment set
Defining parameter functions

• To interpolate parameters across a triangle we need to find the c_x, c_y, and c_k that define the (unique) linear function that matches the given values at all 3 vertices
 – this is 3 constraints on 3 unknown coefficients:
 \[
 \begin{align*}
 c_x x_0 + c_y y_0 + c_k &= q_0 \\
 c_x x_1 + c_y y_1 + c_k &= q_1 \\
 c_x x_2 + c_y y_2 + c_k &= q_2
 \end{align*}
 \]
 (each states that the function agrees with the given value at one vertex)
 – leading to a 3x3 matrix equation for the coefficients:
 \[
 \begin{bmatrix}
 x_0 & y_0 & 1 \\
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1
 \end{bmatrix}
 \begin{bmatrix}
 c_x \\
 c_y \\
 c_k
 \end{bmatrix}
 =
 \begin{bmatrix}
 q_0 \\
 q_1 \\
 q_2
 \end{bmatrix}
 \]
 (singular iff triangle is degenerate)
Defining parameter functions

- More efficient version: shift origin to \((x_0, y_0)\)

\[
q(x, y) = c_x(x - x_0) + c_y(y - y_0) + q_0
\]
\[
q(x_1, y_1) = c_x(x_1 - x_0) + c_y(y_1 - y_0) + q_0 = q_1
\]
\[
q(x_2, y_2) = c_x(x_2 - x_0) + c_y(y_2 - y_0) + q_0 = q_2
\]
- now this is a 2x2 linear system (since \(q_0\) falls out):

\[
\begin{bmatrix}
(x_1 - x_0) & (y_1 - y_0) \\
(x_2 - x_0) & (y_2 - y_0)
\end{bmatrix}
\begin{bmatrix}
c_x \\
c_y
\end{bmatrix}
= \begin{bmatrix}
q_1 - q_0 \\
q_2 - q_0
\end{bmatrix}
\]
- solve using Cramer’s rule (see Shirley):

\[
c_x = (\Delta q_1 \Delta y_2 - \Delta q_2 \Delta y_1) / (\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)
\]
\[
c_y = (\Delta q_2 \Delta x_1 - \Delta q_1 \Delta x_2) / (\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)
\]
Defining parameter functions

linInterp(xl, xh, yl, yh, x0, y0, q0, x1, y1, q1, x2, y2, q2) {

 // setup
 det = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0);
 cx = ((q1-q0)*(y2-y0) - (q2-q0)*(y1-y0)) / det;
 cy = ((q2-q0)*(x1-x0) - (q1-q0)*(x2-x0)) / det;
 qRow = cx*(xl-x0) + cy*(yl-y0) + q0;

 // traversal (same as before)
 for y = yl to yh {
 qPix = qRow;
 for x = xl to xh {
 output(x, y, qPix);
 qPix += cx;
 }
 qRow += cy;
 }
}
Interpolating several parameters

\[
\text{linInterp}(xl, xh, yl, yh, n, x0, y0, q0[],
x1, y1, q1[], x2, y2, q2[]) \{

// setup
for k = 0 to n-1
 // compute cx[k], cy[k], qRow[k]
 // from q0[k], q1[k], q2[k]

// traversal
for y = yl to yh {
 for k = 1 to n, qPix[k] = qRow[k];
 for x = xl to xh {
 output(x, y, qPix);
 for k = 1 to n, qPix[k] += cx[k];
 }
 for k = 1 to n, qRow[k] += cy[k];
}
\]
Rasterizing triangles

- Summary
 1. Evaluation of linear functions on pixel grid
 2. Functions defined by parameter values at vertices
 3. Using extra parameters to determine fragment set
Clipping to the triangle

- Interpolate three *barycentric coordinates* across the plane
 - each barycentric coord is 1 at one vert. and 0 at the other two
- Output fragments only when all three are > 0.
Barycentric coordinates

- A coordinate system for triangles
 - algebraic viewpoint:
 \[\mathbf{p} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} \]
 \[\alpha + \beta + \gamma = 1 \]
 - geometric viewpoint (areas):
- Triangle interior test:
 \[\alpha > 0; \quad \beta > 0; \quad \gamma > 0 \]
Barycentric coordinates

- A coordinate system for triangles
 - geometric viewpoint: distances
 - linear viewpoint: basis of edges

\[\alpha = 1 - \beta - \gamma \]

\[\mathbf{p} = \mathbf{a} + \beta (\mathbf{b} - \mathbf{a}) + \gamma (\mathbf{c} - \mathbf{a}) \]
Barycentric coordinates

- Linear viewpoint: basis for the plane

- in this view, the triangle interior test is just

\[\beta > 0; \quad \gamma > 0; \quad \beta + \gamma < 1 \]
Pixel-walk (Pineda) rasterization

- Conservatively visit a superset of the pixels you want
- Interpolate linear functions
- Use those functions to determine when to emit a fragment
Rasterizing triangles

- Exercise caution with rounding and arbitrary decisions
 - need to visit these pixels once
 - but it’s important not to visit them twice!
Clipping

• Rasterizer tends to assume triangles are on screen
 – particularly problematic to have triangles crossing
 the plane $z = 0$

• After projection, before perspective divide
 – clip against the planes $x, y, z = 1, -1$ (6 planes)
 – primitive operation: clip triangle against axis-aligned plane
Clipping a triangle against a plane

• 4 cases, based on sidedness of vertices
 – all in (keep)
 – all out (discard)
 – one in, two out (one clipped triangle)
 – two in, one out (two clipped triangles)