3D Viewing

CS 4620 Lecture 8
Viewing, backward and forward

• So far have used the backward approach to viewing
 – start from pixel
 – ask what part of scene projects to pixel
 – explicitly construct the ray corresponding to the pixel

• Next will look at the forward approach
 – start from a point in 3D
 – compute its projection into the image

• Central tool is matrix transformations
 – combines seamlessly with coordinate transformations used to position camera and model
 – ultimate goal: single matrix operation to map any 3D point to its correct screen location.
Forward viewing

- Would like to just invert the ray generation process
- Problem 1: ray generation produces rays, not points in scene
- Inverting the ray tracing process requires division for the perspective case
Mathematics of projection

- Always work in eye coords
 - assume eye point at 0 and plane perpendicular to z

- Orthographic case
 - a simple projection: just toss out z

- Perspective case: scale diminishes with z
 - and increases with d
Pipeline of transformations

- Standard sequence of transforms
Parallel projection: orthographic

to implement orthographic, just toss out z:

$$
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
$$
View volume: orthographic
Viewing a cube of size 2

- Start by looking at a restricted case: the canonical view volume
- It is the cube $[-1,1]^3$, viewed from the z direction
- Matrix to project it into a square image in $[-1,1]^2$ is trivial:

$$
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
$$
Viewing a cube of size 2

- To draw in image, need coordinates in pixel units, though
- Exactly the opposite of mapping \((i,j)\) to \((u,v)\) in ray generation
Windowing transforms

- This transformation is worth generalizing: take one axis-aligned rectangle or box to another
 - a useful, if mundane, piece of a transformation chain

\[
\begin{bmatrix}
 x' \\
y'
\end{bmatrix}
= \begin{bmatrix}
x' - x_l \\
y' - y_l
\end{bmatrix}
= \begin{bmatrix}
 x' - x_l \\
y' - y_l
\end{bmatrix}
= \begin{bmatrix}
 x' - x_l \\
y' - y_l
\end{bmatrix}
\]

[Shirley3e f. 6-16; eq. 6-6]
Viewport transformation

\[
\begin{bmatrix}
 x_{\text{screen}} \\
 y_{\text{screen}} \\
 1
\end{bmatrix}
= \begin{bmatrix}
 \frac{n_x}{2} & 0 & \frac{n_x - 1}{2} \\
 0 & \frac{n_y}{2} & \frac{n_y - 1}{2} \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x_{\text{canonical}} \\
 y_{\text{canonical}} \\
 1
\end{bmatrix}
\]
Viewport transformation

- In 3D, carry along z for the ride
 - one extra row and column

$$M_{vp} = \begin{bmatrix} \frac{n_x}{2} & 0 & 0 & \frac{n_x-1}{2} \\ 0 & \frac{n_y}{2} & 0 & \frac{n_y-1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Orthographic projection

- First generalization: different view rectangle
 - retain the minus-z view direction

- specify view by left, right, top, bottom (as in RT)
- also near, far
Clipping planes

• In object-order systems we always use at least two *clipping planes* that further constrain the view volume
 – near plane: parallel to view plane; things between it and the viewpoint will not be rendered
 – far plane: also parallel; things behind it will not be rendered

• These planes are:
 – partly to remove unnecessary stuff (e.g. behind the camera)
 – but really to constrain the range of depths
 (we’ll see why later)
Orthographic projection

• We can implement this by mapping the view volume to the canonical view volume.

• This is just a 3D windowing transformation!

\[
M_{\text{Orth}} = \begin{bmatrix}
 \frac{x'_h-x'_i}{x_h-x_l} & 0 & 0 & \frac{x'_i x_h-x'_h x_l}{x_h-x_l} \\
 0 & \frac{y'_h-y'_i}{y_h-y_l} & 0 & \frac{y'_i y_h-y'_h y_l}{y_h-y_l} \\
 0 & 0 & \frac{z'_h-z'_i}{z_h-z_l} & \frac{z'_i z_h-z'_h z_l}{z_h-z_l} \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
M_{\text{Orth}} = \begin{bmatrix}
 \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
Camera and modeling matrices

• We worked out all the preceding transforms starting from eye coordinates
 – before we do any of this stuff we need to transform into that space

• Transform from world (canonical) to eye space is traditionally called the viewing matrix
 – it is the canonical-to-frame matrix for the camera frame
 – that is, F_c^{-1}

• Remember that geometry would originally have been in the object’s local coordinates; transform into world coordinates is called the modeling matrix, M_m

• Note many programs combine the two into a modelview matrix and just skip world coordinates
Viewing transformation

the camera matrix rewrites all coordinates in eye space
Orthographic transformation chain

- Start with coordinates in object’s local coordinates
- Transform into world coords (modeling transform, M_m)
- Transform into eye coords (camera xf., $M_{\text{cam}} = F_c^{-1}$)
- Orthographic projection, M_{orth}
- Viewport transform, M_{vp}

$$\mathbf{p}_s = M_{\text{vp}}M_{\text{orth}}M_{\text{cam}}M_mp_o$$
Perspective projection

similar triangles:

\[
\frac{y'}{d} = \frac{y}{-z}
\]

\[
y' = -\frac{dy}{z}
\]
Homogeneous coordinates revisited

• Perspective requires division
 – that is not part of affine transformations
 – in affine, parallel lines stay parallel
 • therefore not vanishing point
 • therefore no rays converging on viewpoint

• “True” purpose of homogeneous coords: projection
Homogeneous coordinates revisited

• Introduced \(w = 1 \) coordinate as a placeholder

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix} \rightarrow \begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

 – used as a convenience for unifying translation with linear

• Can also allow arbitrary \(w \)

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix} \sim \begin{bmatrix}
 wx \\
 wy \\
 wz \\
 w
\end{bmatrix}
\]
Implications of w

- All scalar multiples of a 4-vector are equivalent
- When w is not zero, can divide by w
 - therefore these points represent “normal” affine points
- When w is zero, it’s a point at infinity, a.k.a. a direction
 - this is the point where parallel lines intersect
 - can also think of it as the vanishing point
- Digression on projective space
Perspective projection

to implement perspective, just move z to w:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} -dx/z \\ -dy/z \\ 1 \end{bmatrix} \sim \begin{bmatrix} dx \\ dy \\ -z \end{bmatrix} = \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
View volume: perspective
View volume: perspective (clipped)
Carrying depth through perspective

- Perspective has a varying denominator—can’t preserve depth!
- Compromise: preserve depth on near and far planes

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} \sim \begin{bmatrix}
x \\
y \\
z \\
-1
\end{bmatrix} = \begin{bmatrix}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

- that is, choose a and b so that \(z'(n) = n \) and \(z'(f) = f \).

\[
\tilde{z}(z) = az + b
\]

\[
z'(z) = \frac{\tilde{z}}{-z} = \frac{az + b}{-z}
\]

want \(z'(n) = n \) and \(z'(f) = f \)

result: \(a = -(n + f) \) and \(b = nf \) (try it)
Official perspective matrix

- Use near plane distance as the projection distance
 - i.e., \(d = -n \)
- Scale by \(-1\) to have fewer minus signs
 - scaling the matrix does not change the projective transformation

\[
P = \begin{bmatrix}
 n & 0 & 0 & 0 \\
 0 & n & 0 & 0 \\
 0 & 0 & n + f & -fn \\
 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]
Perspective projection matrix

- Product of perspective matrix with orth. projection matrix

\[M_{\text{per}} = M_{\text{orth}} P \]

\[
\begin{bmatrix}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -fn \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0 \\
0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0 \\
0 & 0 & \frac{f+n}{n-f} & \frac{2fn}{f-n} \\
0 & 0 & 1 & 0
\end{bmatrix}
\]
Perspective transformation chain

- Transform into world coords (modeling transform, M_m)
- Transform into eye coords (camera xf., $M_{\text{cam}} = F_c^{-1}$)
- Perspective matrix, P
- Orthographic projection, M_{orth}
- Viewport transform, M_{vp}

\[p_s = M_{\text{vp}}M_{\text{orth}}PM_{\text{cam}}M_mp_o \]

\[
\begin{bmatrix}
x_s \\
y_s \\
z_c \\
1
\end{bmatrix} = \begin{bmatrix}
\frac{n_x}{2} & 0 & 0 & \frac{n_x - 1}{2} \\
0 & \frac{n_y}{2} & 0 & \frac{n_y - 1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n + f & -fn \\
0 & 0 & 1 & 0
\end{bmatrix} M_{\text{cam}}M_m \begin{bmatrix}
x_o \\
y_o \\
z_o \\
1
\end{bmatrix} \]
Pipeline of transformations

- Standard sequence of transforms

1. **Object space**
2. **Modeling transformation**
3. **Camera transformation**
4. **World space**
5. **Camera space**
6. **Projection transformation**
7. **Viewport transformation**
8. **Screen space**
9. **Canonical view volume**