Ray Tracing: intersection and shading

CS 4620 Lecture 3
Ray intersection
Ray: a half line

- Standard representation: point p and direction d
 \[r(t) = p + td \]
 - this is a parametric equation for the line
 - lets us directly generate the points on the line
 - if we restrict to $t > 0$ then we have a ray
 - note replacing d with ad doesn’t change ray ($a > 0$)
Ray-sphere intersection: algebraic

• Condition 1: point is on ray
 \[\mathbf{r}(t) = \mathbf{p} + t \mathbf{d} \]

• Condition 2: point is on sphere
 – assume unit sphere; see Shirley or notes for general
 \[\| \mathbf{x} \| = 1 \iff \| \mathbf{x} \|^2 = 1 \]
 \[f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x} - 1 = 0 \]

• Substitute:
 \[(\mathbf{p} + t \mathbf{d}) \cdot (\mathbf{p} + t \mathbf{d}) - 1 = 0 \]
 – this is a quadratic equation in \(t \)
Ray-sphere intersection: algebraic

• Solution for t by quadratic formula:

$$t = \frac{-d \cdot p \pm \sqrt{(d \cdot p)^2 - (d \cdot d)(p \cdot p - 1)}}{d \cdot d}$$

$$t = -d \cdot p \pm \sqrt{(d \cdot p)^2 - p \cdot p + 1}$$

– simpler form holds when d is a unit vector
 but we won’t assume this in practice (reason later)
– I’ll use the unit-vector form to make the geometric interpretation
Ray-sphere intersection: geometric

\[t_m = -p \cdot d \]
\[l_m^2 = p \cdot p - (p \cdot d)^2 \]
\[\Delta t = \sqrt{1 - l_m^2} \]
\[= \sqrt{(p \cdot d)^2 - p \cdot p + 1} \]
\[t_{0,1} = t_m \pm \Delta t = -p \cdot d \pm \sqrt{(p \cdot d)^2 - p \cdot p + 1} \]
Ray-box intersection

- Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs
Ray-box intersection

- Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs
Ray-box intersection

- Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs
Ray-box intersection

- Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs
Ray-slab intersection

- 2D example
- 3D is the same!
Ray-slab intersection

- 2D example
- 3D is the same!
Ray-slab intersection

- 2D example
- 3D is the same!

\[p_x + t_{x_{\text{min}}} d_x = x_{\text{min}} \]
\[t_{x_{\text{min}}} = \frac{(x_{\text{min}} - p_x)}{d_x} \]
Ray-slab intersection

- 2D example
- 3D is the same!

\[p_x + t_{x_{\min}} d_x = x_{\min} \]
\[t_{x_{\min}} = \frac{(x_{\min} - p_x)}{d_x} \]

\[p_y + t_{y_{\min}} d_y = y_{\min} \]
\[t_{y_{\min}} = \frac{(y_{\min} - p_y)}{d_y} \]
Intersecting intersections

- Each intersection is an interval
- Want last entry point and first exit point
Intersecting intersections

• Each intersection is an interval
• Want last entry point and first exit point

\[t_{x_{\text{enter}}} = \min(t_{x_{\text{min}}}, t_{x_{\text{max}}}) \]
\[t_{x_{\text{exit}}} = \max(t_{x_{\text{min}}}, t_{x_{\text{max}}}) \]
Intersecting intersections

- Each intersection is an interval
- Want last entry point and first exit point

\[
 t_{x\text{enter}} = \min(t_{x\text{min}}, t_{x\text{max}}) \\
 t_{x\text{exit}} = \max(t_{x\text{min}}, t_{x\text{max}})
\]
Intersecting intersections

- Each intersection is an interval
- Want last entry point and first exit point

\[
\begin{align*}
t_{x\text{enter}} &= \min(t_{x\text{min}}, t_{x\text{max}}) \\
t_{x\text{exit}} &= \max(t_{x\text{min}}, t_{x\text{max}}) \\
t_{y\text{enter}} &= \min(t_{y\text{min}}, t_{y\text{max}}) \\
t_{y\text{exit}} &= \max(t_{y\text{min}}, t_{y\text{max}})
\end{align*}
\]
Intersecting intersections

- Each intersection is an interval
- Want last entry point and first exit point

\[
\begin{align*}
t_{x\text{enter}} &= \min(t_{x\text{min}}, t_{x\text{max}}) \\
t_{x\text{exit}} &= \max(t_{x\text{min}}, t_{x\text{max}}) \\
t_{y\text{enter}} &= \min(t_{y\text{min}}, t_{y\text{max}}) \\
t_{y\text{exit}} &= \max(t_{y\text{min}}, t_{y\text{max}})
\end{align*}
\]
Intersecting intersections

- Each intersection is an interval
- Want last entry point and first exit point

\[
t_{x\text{enter}} = \min(t_{x\text{min}}, t_{x\text{max}})
\]
\[
t_{x\text{exit}} = \max(t_{x\text{min}}, t_{x\text{max}})
\]
\[
t_{y\text{enter}} = \min(t_{y\text{min}}, t_{y\text{max}})
\]
\[
t_{y\text{exit}} = \max(t_{y\text{min}}, t_{y\text{max}})
\]
\[
t_{\text{enter}} = \max(t_{x\text{enter}}, t_{y\text{enter}})
\]
\[
t_{\text{exit}} = \min(t_{x\text{exit}}, t_{y\text{exit}})
\]
Ray-triangle intersection

• Condition 1: point is on ray
 \[r(t) = p + td \]

• Condition 2: point is on plane
 \[(x - a) \cdot n = 0 \]

• Condition 3: point is on the inside of all three edges

• First solve 1 & 2 (ray–plane intersection)
 – substitute and solve for \(t \):
 \[(p + td - a) \cdot n = 0 \]
 \[t = \frac{(a - p) \cdot n}{d \cdot n} \]
Ray-triangle intersection

- In plane, triangle is the intersection of 3 half spaces
Ray-triangle intersection

- In plane, triangle is the intersection of 3 half spaces
Ray-triangle intersection

- In plane, triangle is the intersection of 3 half spaces
Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces
Inside-edge test

- Need outside vs. inside
- Reduce to clockwise vs. counterclockwise
 - vector of edge to vector to \mathbf{x}
- Use cross product to decide
Ray-triangle intersection

\[(b - a) \times (x - a) \cdot n > 0\]
\[(c - b) \times (x - b) \cdot n > 0\]
\[(a - c) \times (x - c) \cdot n > 0\]
Ray-triangle intersection

• See book for a more efficient method based on linear systems
 – (don’t need this for Ray 1 anyhow—but stash away for Ray 2)
Image so far

• With eye ray generation and sphere intersection

```java
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
    for 0 <= ix < nx {
        ray = camera.getRay(ix, iy);
        hitSurface, t = s.intersect(ray, 0, +inf)
        if hitSurface is not null
            image.set(ix, iy, white);
    }
```
Intersection against many shapes

• The basic idea is:

```java
Group.intersect (ray, tMin, tMax) {
    tBest = +inf; firstSurface = null;
    for surface in surfaceList {
        hitSurface, t = surface.intersect(ray, tMin, tBest);
        if hitSurface is not null {
            tBest = t;
            firstSurface = hitSurface;
        }
    }
    return hitSurface, tBest;
}
```

– this is linear in the number of shapes
 but there are sublinear methods (acceleration structures)
Image so far

- With eye ray generation and scene intersection

```java
for 0 <= iy < ny
   for 0 <= ix < nx {
      ray = camera.getRay(ix, iy);
      c = scene.trace(ray, 0, +inf);
      image.set(ix, iy, c);
   }
...

Scene.trace(ray, tMin, tMax) {
   surface, t = surfs.intersect(ray, tMin, tMax);
   if (surface != null) return surface.color();
   else return black;
}
```
Shading

• Compute light reflected toward camera
• Inputs:
 – eye direction
 – light direction
 (for each of many lights)
 – surface normal
 – surface parameters
 (color, shininess, …)
Diffuse reflection

- Light is scattered uniformly in all directions
 - the surface color is the same for all viewing directions
- Lambert’s cosine law

In general, light per unit area is proportional to \(\cos \theta = \mathbf{l} \cdot \mathbf{n} \)

Top face of cube receives a certain amount of light

Top face of 60° rotated cube intercepts half the light
Lambertian shading

- Shading independent of view direction

\[L_d = k_d I \max(0, \mathbf{n} \cdot \mathbf{l}) \]
Lambertian shading

• Produces matte appearance
Diffuse shading
Scene.trace(Ray ray, tMin, tMax) {
 surface, t = hit(ray, tMin, tMax);
 if surface is not null {
 point = ray.evaluate(t);
 normal = surface.getNormal(point);
 return surface.shade(ray, point,
 normal, light);
 } else return backgroundColor;
}

...
Shadows

• Surface is only illuminated if nothing blocks its view of the light.
• With ray tracing it’s easy to check
 – just intersect a ray with the scene!
Image so far

Surface.shade(ray, point, normal, light) {
 shadRay = (point, light.pos – point);
 if (shadRay not blocked) {
 v = –normalize(ray.direction);
 l = normalize(light.pos – point);
 // compute shading
 }
 return black;
}
Shadow rounding errors

• Don’t fall victim to one of the classic blunders:

• What’s going on?
 – hint: at what t does the shadow ray intersect the surface you’re shading?
Shadow rounding errors

- Solution: shadow rays start a tiny distance from the surface

- Do this by moving the start point, or by limiting the t range
Multiple lights

• Important to fill in black shadows
• Just loop over lights, add contributions
• Ambient shading
 – black shadows are not really right
 – one solution: dim light at camera
 – alternative: add a constant “ambient” color to the shading…
Image so far

shade(ray, point, normal, lights) {
 result = ambient;
 for light in lights {
 if (shadow ray not blocked) {
 result += shading contribution;
 }
 }
 return result;
}
Specular shading (Blinn-Phong)

- Intensity depends on view direction
 - bright near mirror configuration
Specular shading (Blinn-Phong)

- Close to mirror ⇔ half vector near normal
 - Measure “near” by dot product of unit vectors

\[
\begin{align*}
 h &= \text{bisector}(v, l) \\
 &= \frac{v + l}{\|v + l\|} \\
 L_s &= k_s I \max(0, \cos \alpha)^p \\
 &= k_s I \max(0, n \cdot h)^p
\end{align*}
\]
Phong model—plots

- Increasing n narrows the lobe
Specular shading

\[k_s \]

\[p \]
Diffuse + Phong shading
Ambient shading

- Shading that does not depend on anything
 - add constant color to account for disregarded illumination and fill in black shadows

\[L_a = k_a I_a \]
Putting it together

• Usually include ambient, diffuse, Phong in one model

\[L = L_a + L_d + L_s \]
\[= k_a I_a + k_d I \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s I \max(0, \mathbf{n} \cdot \mathbf{h})^p \]

• The final result is the sum over many lights

\[L = L_a + \sum_{i=1}^{N} [(L_d)_i + (L_s)_i] \]
\[L = k_a I_a + \sum_{i=1}^{N} [k_d I_i \max(0, \mathbf{n} \cdot \mathbf{l}_i) + k_s I_i \max(0, \mathbf{n} \cdot \mathbf{h}_i)^p] \]
Ray tracer architecture 101

- You want a class called Ray
 - point and direction; evaluate(t)
 - possible: tMin, tMax
- Some things can be intersected with rays
 - individual surfaces
 - groups of surfaces (acceleration goes here)
 - the whole scene
 - make these all subclasses of Surface
 - limit the range of valid t values (e.g. shadow rays)
- Once you have the visible intersection, compute the color
 - may want to separate shading code from geometry
 - separate class: Material (each Surface holds a reference to one)
 - its job is to compute the color
Architectural practicalities

• Return values
 – surface intersection tends to want to return multiple values
 • t, surface or shader, normal vector, maybe surface point
 – in many programming languages (e.g. Java) this is a pain
 – typical solution: an intersection record
 • a class with fields for all these things
 • keep track of the intersection record for the closest intersection
 • be careful of accidental aliasing (which is very easy if you’re new to Java)

• Efficiency
 – in Java the (or, a) key to being fast is to minimize creation of objects
 – what objects are created for every ray? try to find a place for them where you can re-use
 – Shadow rays can be cheaper (any intersection will do, don’t need closest)
 – but: “First Get it Right, Then Make it Fast”