CS 4620 Preliminary Exam \#1

Tuesday 5 October 2010-50 minutes
Explain your reasoning for full credit.
You are permitted a double-sided sheet of notes.
Calculators are allowed but unnecessary.

Problem 1: 2D Transformations (15 pts)
(i) Estimate the 2D affine transformation matrix, $\mathbf{T}=\left[\begin{array}{cc}\boldsymbol{F} & \boldsymbol{v} \\ 0^{T} & 1\end{array}\right] \in \mathbb{R}^{\mathbf{3} \times \mathbf{3}}$, given its action on three homogeneous points:

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \xrightarrow{\boldsymbol{T}}\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \xrightarrow{\boldsymbol{T}}\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) \xrightarrow{\boldsymbol{T}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .
$$

(ii) What kind of transformation does this matrix represent?

Problem 2: Affine Transformations (10 pts)
Show that affine transformations preserve parallel lines.
(Hint: Recall the explicit parameterization of a line.)

Problem 3: Quaternions (15 pts)
Rotate the point $\boldsymbol{p}=(1,1,1)$ using the rotation specified by the quaternion $q=\langle d ; \boldsymbol{u}\rangle=\langle 1 ; 1,1,1\rangle$.

Problem 4: SLERP (10 pts)
When interpolating with SLERP between two unit quaternions, \boldsymbol{x} and \boldsymbol{y}, we use:

$$
\operatorname{SLERP}(\boldsymbol{x}, \boldsymbol{y}, \alpha) \text {, if } \boldsymbol{x} \cdot \boldsymbol{y}>0, \text { and } \operatorname{SLERP}(\boldsymbol{x},-\boldsymbol{y}, \alpha) \text { otherwise. }
$$

(i) Why is this method better than just $\operatorname{SLERP}(\boldsymbol{x}, \boldsymbol{y}, \alpha)$? What is the difference between $+\boldsymbol{y}$ and $-\boldsymbol{y}$ here?
(ii) When interpolating unit normal vectors, \boldsymbol{n}_{1} and \boldsymbol{n}_{2}, for lighting calculations, should we also use $\operatorname{SLERP}\left(\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \alpha\right)$, if $\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}>0$, and $\operatorname{SLERP}\left(\boldsymbol{n}_{1},-\boldsymbol{n}_{2}, \alpha\right)$ otherwise?

