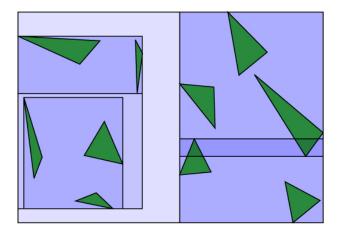
CS4620/5620: Lecture 37

Ray Tracing, Color, Compositing

Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • I
(with previous instructors James/Marschner)

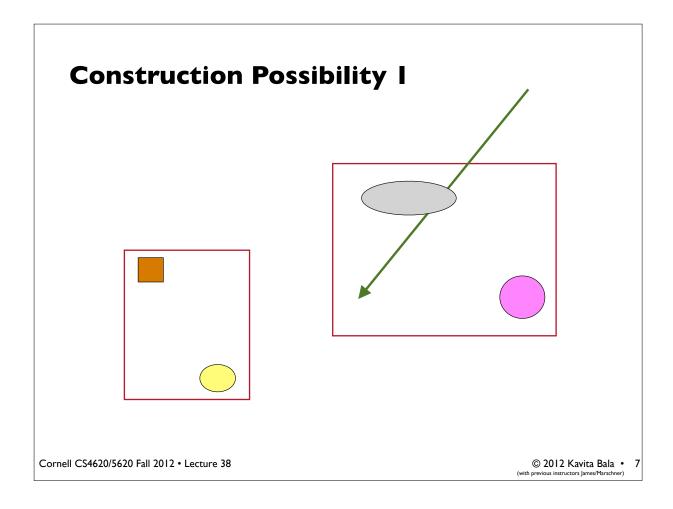
Announcements

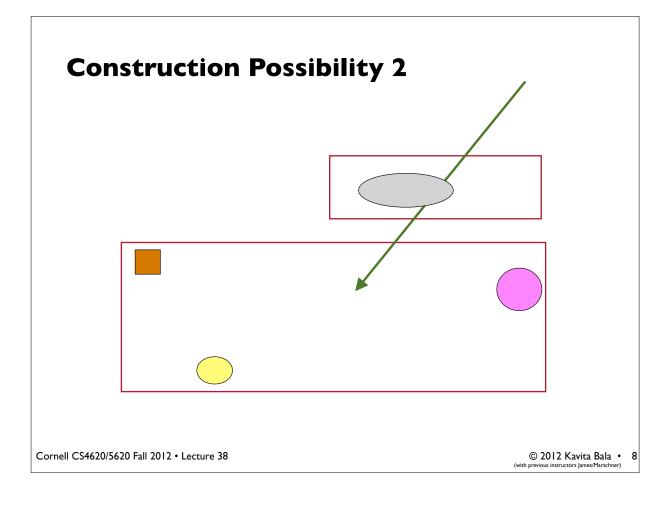

• Prelim on Thu in B17 at 7:30pm

Implementing a bvol hierarchy

- A BoundedSurface can contain a list of Surfaces
- Some of those Surfaces might be more BoundedSurfaces
- Voilà! A bounding volume hierarchy
 - -And it's all still transparent to the renderer

BVH construction example




Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • 5

Building a hierarchy

- Can do it top down or bottom up
- Top down
 - Make bbox for whole scene, then split into parts
 - Recurse on parts
 - Stop when there are just a few objects in your box
 - Or if you are too deep (say max depth = 24)

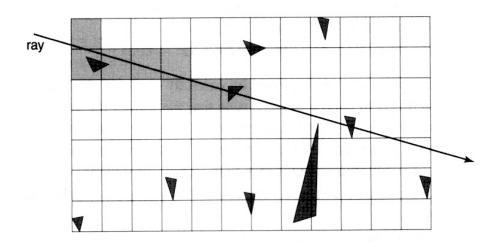
Building a hierarchy

- How to partition?
 - Practical: partition along axis
 - Center partition
 - -Simple
 - -Unbalanced tree
 - Median partition
 - -More expensive
 - -More balanced tree
- Objects that cross the median partition
 - -Pick one of the sides to put the object on
 - Expand the bbox to cover that object

Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • 9
(with previous instructors lames/Marschner)

_

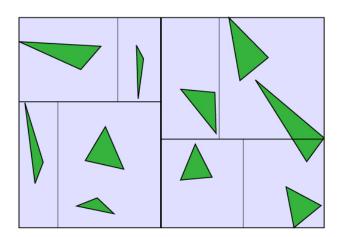

Hierarchical Data Structures

- From O(N) to O(log N)
 - Cluster objects hierarchically
 - -Single intersection might eliminate cluster
- Bounding volume hierarchy
- Space subdivision
 - -Octree
 - -Kd-tree
 - -Uniform

Cornell CS4620/5620 Fall 2012 • Lecture 38

Regular space subdivision

• An entirely different approach: uniform grid of cells



Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • 11

Non-regular space subdivision

- k-d Tree
 - subdivides space, like grid
 - -adaptive, like BVH

Cornell CS4620/5620 Fall 2012 • Lecture 38

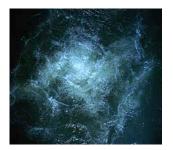
© 2012 Kavita Bala • 12 (with previous instructors James/Marschner)

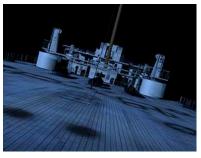
Implementing acceleration structures

- Conceptually simple to build acceleration structure into scene structure
- Better engineering decision to separate them

Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • 13


Topics we have not covered


- Compositing
- Color
- Displays
- 5625 topics
 - Focus on rendering and modeling

Compositing

[*Titanic*; DigitalDomain; vfxhq.com]

Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • 15

Combining images

- Often useful combine elements of several images
- Trivial example: video crossfade
 - -smooth transition from one scene to another

$$r_C = tr_A + (1 - t)r_B$$
$$g_C = tg_A + (1 - t)g_B$$
$$b_C = tb_A + (1 - t)b_B$$

- note: weights sum to 1.0
 - no unexpected brightening or darkening
 - no out-of-range results
- -this is linear interpolation

Foreground and background

- In many cases just adding is not enough
- Example: compositing in film production
 - shoot foreground and background separately
 - -also include CG elements
 - -how should we do it digitally?

Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • 17

Foreground and background

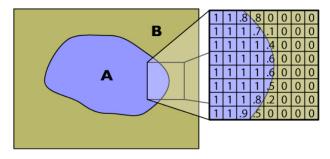
• How we compute new image varies with position

[Chuang et al./ Corel]

 Therefore, need to store some kind of tag to say what parts of the image are of interest

Binary image mask

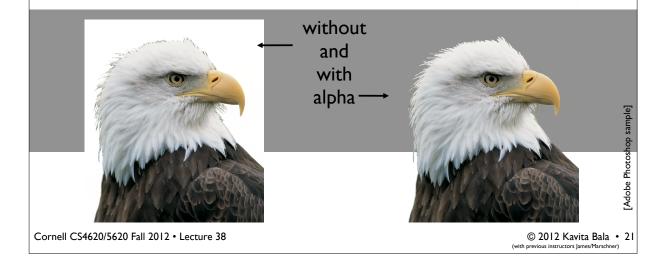
- First idea: store one bit per pixel
 - -answers question "is this pixel part of the foreground?"


- -causes jaggies similar to point-sampled rasterization
- same problem, same solution: intermediate values

Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • 19

Partial pixel coverage


• The problem: pixels near boundary are not strictly foreground or background

- -how to represent this simply?
- -interpolate boundary pixels between the fg. and bg. colors

Datatypes for raster images

- For color or grayscale, add alpha channel
 - describes transparency of images

Alpha compositing

- Formalized in 1984 by Porter & Duff
- ullet Store fraction of pixel covered, called lpha

$$C = A \text{ over } B$$

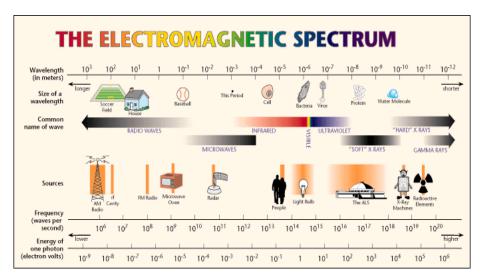
$$r_C = \alpha_A r_A + (1 - \alpha_A) r_B$$

$$g_C = \alpha_A g_A + (1 - \alpha_A) g_B$$
 through
$$area~(1 - \alpha)~~b_C = \alpha_A b_A + (1 - \alpha_A) b_B$$

- -this exactly like a spatially varying crossfade
- Convenient implementation
 - -8 more bits makes 32
 - -2 multiplies + I add per pixel for compositing

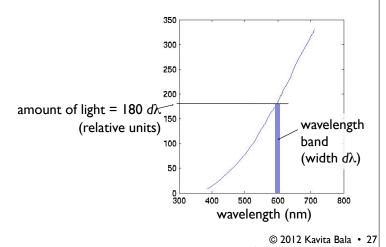
Alpha compositing—example

Cornell CS4620/5620 Fall 2012 • Lecture 38


© 2012 Kavita Bala • 23 (with previous instructors James/Marschner)

Color Science

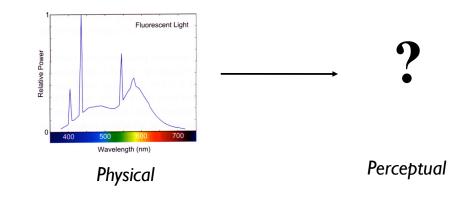
What light is


- Light is electromagnetic radiation
 - exists as oscillations of different frequency (or, wavelength)

[Lawrence Berkeley Lab / MicroWorlds]

Measuring light

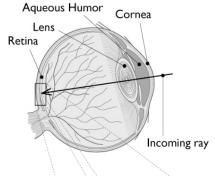
- Salient property is the spectral power distribution (SPD)
 - the amount of light present at each wavelength
 - -units: Watts per nanometer (tells you how much power you'll find in a narrow range of wavelengths)

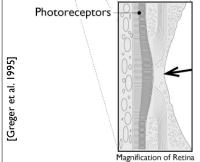

Cornell CS4620/5620 Fall 2012 • Lecture 38

What color is

- Colors are the sensations that arise from light energy of different wavelengths
 - we are sensitive from about 380 to 760 nm—one "octave"
- Roughly speaking, things appear "colored" when they depend on wavelength and "gray" when they do not.

The problem of color science

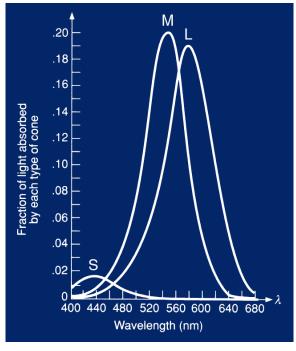

- Build a model for human color perception
- That is, map a Physical light description to a Perceptual color sensation



Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • 29 (with previous instructors James/Marschner)

The eye as a measurement device

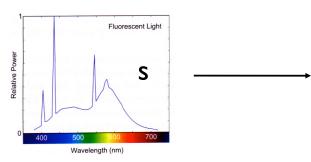


- We can model the low-level behavior of the eye by thinking of it as a light-measuring machine
 - its optics are much like a camera
 - its detection mechanism is also much like a camera
- Light is measured by the photoreceptors in the retina
 - -they respond to visible light
 - different types respond to different wavelengths

Cornell CS4620/5620 Fall 2012 • Lecture 38

Cone Responses

- S,M,L cones have broadband spectral sensitivity
- Results in a trichromatic visual system
- S, M, and L are tristimulus values


source unknow

Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • 31 (with previous instructors lames/Marschner)

Colorimetry: an answer to the problem

- Wanted to map a Physical light description to a Perceptual color sensation
- Basic solution was known and standardized by 1930
 - -Though not quite in this form—more on that in a bit

 $S = r_S \cdot s$

 $M = r_M \cdot s$

 $L = r_L \cdot s$

Physical

Perceptual

Cornell CS4620/5620 Fall 2012 • Lecture 38

[Stone 2003]

Basic fact of colorimetry

- Take a spectrum (which is a function)
- Eye produces three numbers
- This throws away a lot of information!
 - Quite possible to have two different spectra that have the same S, M, L tristimulus values
 - -Two such spectra are metamers

Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • 33

Basic colorimetric concepts

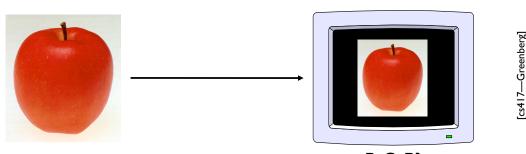
- Luminance
 - the overall magnitude of the the visual response to a spectrum (independent of its color)
 - corresponds to the everyday concept "brightness"
 - determined by product of SPD with the *luminous efficiency* function V_{λ} that describes the eye's overall ability to detect light

at each wavelength

e.g. lamps are optimized
 to improve their luminous
 efficiency (tungsten vs.
 fluorescent vs. sodium vapor)

Ston

More basic colorimetric concepts

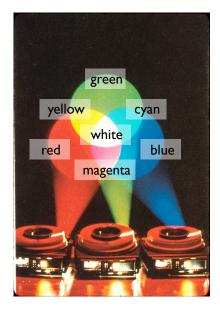

- Chromaticity
 - what's left after luminance is factored out (the color without regard for overall brightness)
 - scaling a spectrum up or down leaves chromaticity alone
- Dominant wavelength
 - -many colors can be matched by white plus a spectral color
 - -correlates to everyday concept "hue"
- Purity
 - -ratio of pure color to white in matching mixture
 - correlates to everyday concept "colorfulness" or "saturation"

Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • 35

Color reproduction

- Have a spectrum s; want to match on RGB monitor
 - -"match" means it looks the same
 - -any spectrum that projects to the same point in the visual color space is a good reproduction
- Must find a spectrum that the monitor *can* produce that is a metamer of s



R, G, B?

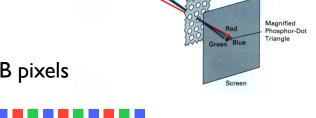
Cornell CS4620/5620 Fall 2012 • Lecture 38

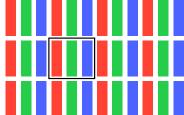
Color displays

- Operating principle: humans are trichromatic
 - -match any color with blend of three
 - therefore, problem reduces to producing 3 images and blending
- Additive color
 - -blend images by sum
 - -R, G, B make good primaries

[cs417 S02 slides]

Cornell CS4620/5620 Fall 2012 • Lecture 38


© 2012 Kavita Bala • 37


Color displays

• CRT: phosphor dot pattern to produce finely interleaved

color images

• LCD: interleaved R,G,B pixels

Cornell CS4620/5620 Fall 2012 • Lecture 38

Subtractive Color

[source unknown

Cornell CS4620/5620 Fall 2012 • Lecture 30

© 2012 Kavita Bala • 39

Subtractive color

- Produce desired spectrum by subtracting from white light (usually via absorption by pigments)
- Photographic media (slides, prints) work this way
- Leads to C, M,Y as primaries
- Approximately, I R, I G, I B

Color spaces

- Need three numbers to specify a color
 - -but what three numbers?
 - -a color space is an answer to this question
- Common example: monitor RGB
 - define colors by what R, G, B signals will produce them on your monitor

```
(in math, s = RR + GG + BB for some spectra R, G, B)
```

- device dependent (depends on gamma, phosphors, gains, ...)
 - therefore if I choose RGB by looking at my monitor and send it to you, you may not see the same color
- -also leaves out some colors (limited gamut), e.g. vivid yellow

Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • 41
(with previous instructors James/Marschner)

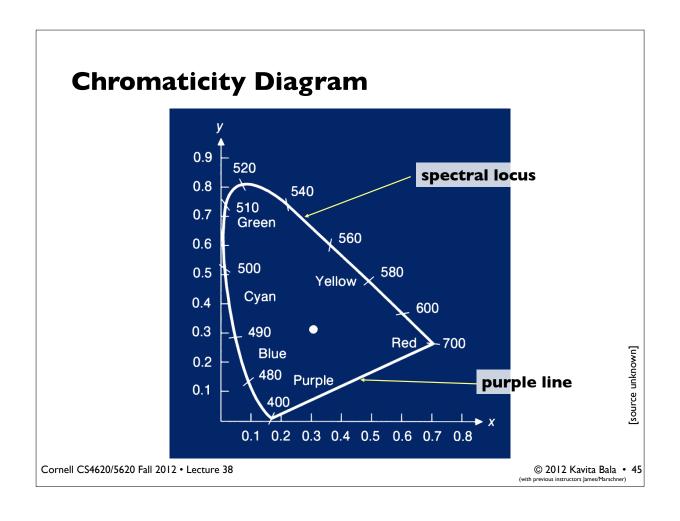
Standard color spaces

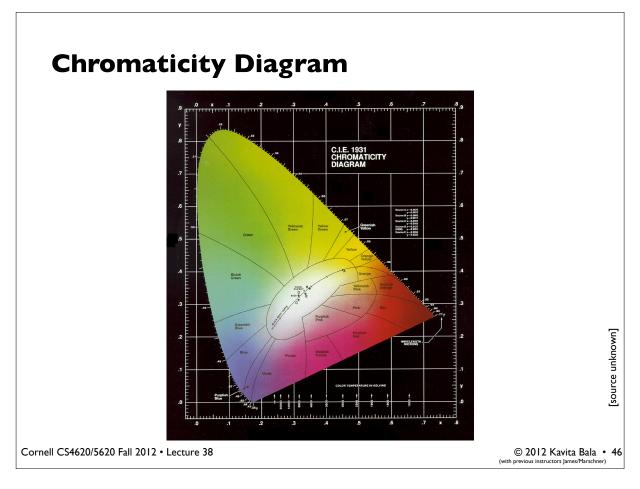
- Standardized RGB (sRGB)
 - -makes a particular monitor RGB standard
 - other color devices simulate that monitor by calibration
 - -sRGB is usable as an interchange space; widely adopted today
 - -gamut is still limited

A universal color space: XYZ

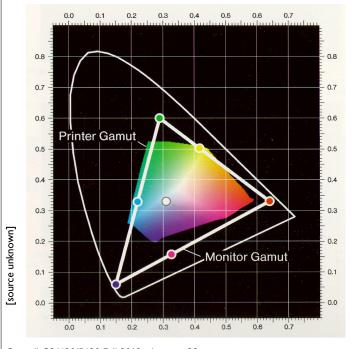
- Standardized by CIE (Commission Internationale de l'Eclairage, the standards organization for color science)
- Based on three "imaginary" primaries X, Y, and Z
 (in math, s = XX + YY + ZZ)
 - imaginary = only realizable by spectra that are negative at some wavelengths
 - key properties
 - any stimulus can be matched with positive X, Y, and Z
 - separates out luminance: **X**, **Z** have zero luminance, so Y tells you the luminance by itself

Cornell CS4620/5620 Fall 2012 • Lecture 38


© 2012 Kavita Bala • 43


Separating luminance, chromaticity

- Luminance: Y
- Chromaticity: x, y, z, defined as

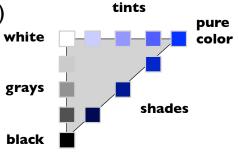

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$
$$z = \frac{Z}{X + Y + Z}$$

- since x + y + z = 1, we only need to record two of the three • usually choose x and y, leading to (x, y, Y) coords

Color Gamuts

Monitors/printers can't produce all visible colors

Reproduction is limited to a particular domain


For additive color (e.g. monitor) gamut is the triangle defined by the chromaticities of the three primaries.

Cornell CS4620/5620 Fall 2012 • Lecture 38

© 2012 Kavita Bala • 47

Perceptually organized color spaces

- Artists often refer to colors as tints, shades, and tones of pure pigments
- Hue, Saturation, Lightness (HSV)
- Luv, Lab (separate luminance)

after FvDFH]