CS4620/5620: Lecture 26

Sampling and Anti-Aliasing

Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • (with previous instructors James/Marschner)

Announcements

- 4621
 - -Next two Fridays
 - Friday, Nov 2 (splines), Nov 9 (animation)

Antialiasing

- Point sampling makes an all-or-nothing choice in each pixel
 - -therefore steps are inevitable when the choice changes
 - -discontinuities are bad
- On bitmap devices this is necessary
 - -hence high resolutions required
 - -600+ dpi in laser printers to make aliasing invisible
- On continuous-tone devices we can do better

Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 3
(with previous instructors lames/Marschner)

Antialiasing and resampling

- Antialiasing by regular supersampling is the same as rendering a larger image and then resampling it to a smaller size
- So we can re-think this
 - one way: we're computing area of pixel covered by primitive
 - -another way: we're computing average color of pixel
 - this way generalizes easily to arbitrary filters, arbitrary images

Weighted filtering

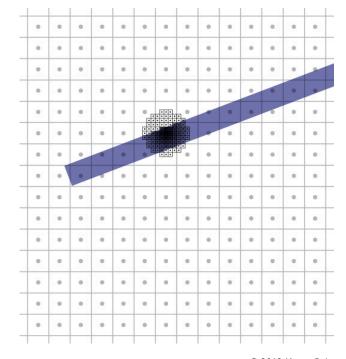
- Box filtering problem
 - -Treats area near edge same as area near center
 - results in pixel turning on "too abruptly"
- Alternative: weight area by a smoother filter
 - -unweighted averaging corresponds to using a box function

Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • (with previous instructors lames/Marschner)

Weighted filtering by supersampling

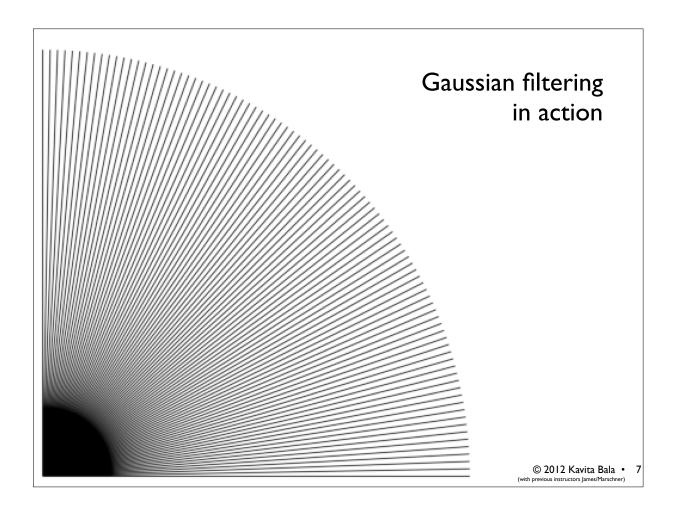
- Compute filtering integral by summing filter values for covered subpixels
- Simple, accurate
- But really slow

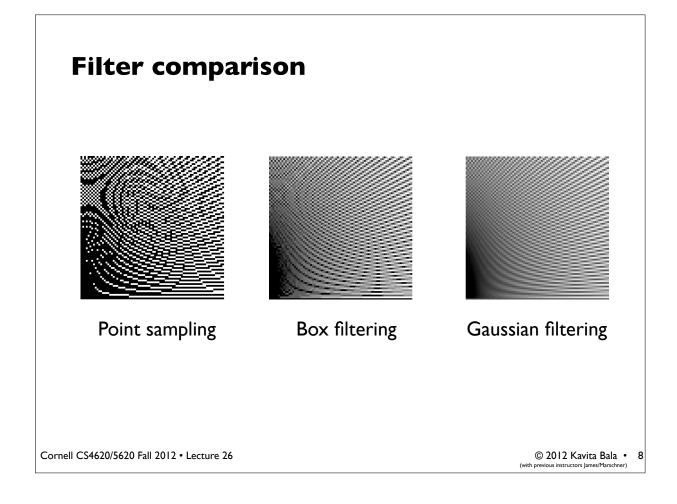


Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala •

6





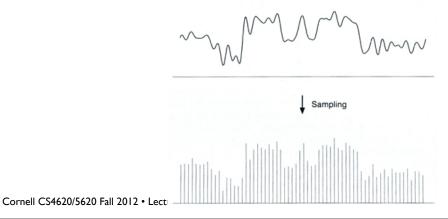
Sampling Theory

Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • (with previous instructors lames/Marschner)

Sampled representations

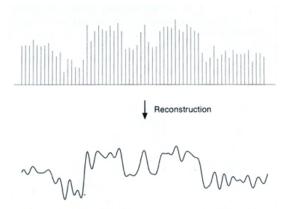
- How to store and compute with continuous functions?
- Common scheme for representation: samples
 - -write down the function's values at many points
 - images, textures, etc.



[FvDFH fig.14.14b / Wolberg]

Reconstruction

- Making samples back into a continuous function
 - -for output (need realizable method)
 - -for analysis or processing (need mathematical method)
 - -amounts to "guessing" what the function did in between



Cornell CS4620/5620 Fall 2012 • Lect... _ __

© 2012 Kavita Bala • 11

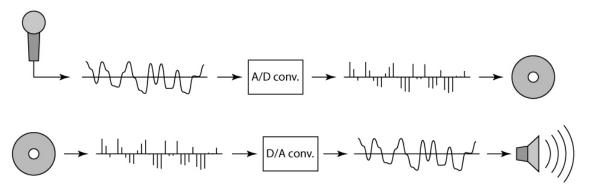
FvDFH fig.14.14b / Wolberg]

Roots of sampling

- Nyquist 1928; Shannon 1949
 - -famous results in information theory
- 1940s: first practical uses in telecommunications
- 1960s: first digital audio systems
- 1970s: commercialization of digital audio
- 1982: introduction of the Compact Disc
 - the first high-profile consumer application
- This is why all the terminology has a communications or audio "flavor"
 - -early applications are ID; for us 2D (images) is important

Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
 - -how can we be sure we are filling in the gaps correctly?

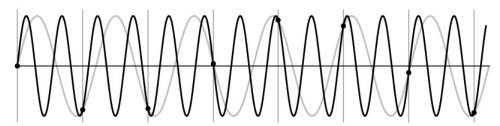


Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 13

What is aliasing?

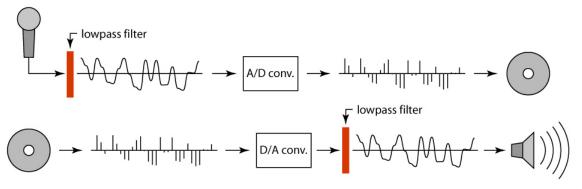
- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - -unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - -also was always indistinguishable from higher frequencies
 - aliasing: signals "traveling in disguise" as other frequencies



Cornell CS4620/5620 Fall 2012 • Lecture 26

Preventing aliasing

- Introduce lowpass filters:
 - remove high frequencies leaving only safe, low frequencies
 - -choose lowest frequency in reconstruction (disambiguate)

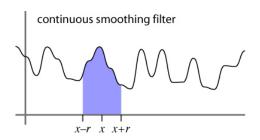


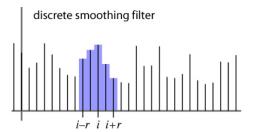
Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 15

Filtering

- Processing done on a function
 - -can be executed in continuous form (e.g. analog circuit)
 - -but can also be executed using sampled representation
- Simple example: smoothing by averaging





Cornell CS4620/5620 Fall 2012 • Lecture 26

Linear filtering: a key idea

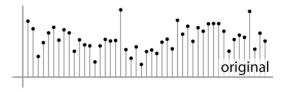
- Transformations on signals; e.g.:
 - -blurring/sharpening operations in image editing
 - -smoothing/noise reduction in tracking
- Can be modeled mathematically by convolution

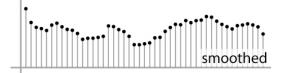
Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 17

Convolution warm-up

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing





Convolution warm-up

• Same moving average operation, expressed mathematically:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 19

Discrete convolution

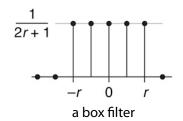
- $b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{i=i-r}^{i+r} b[j]$ • Simple averaging:
 - every sample gets the same weight
- Convolution: same idea but with weighted average

$$(a \star b)[i] = \sum_{j} a[j]b[i-j]$$

- -each sample gets its own weight (normally zero far away)
- This is all convolution is: it is a moving weighted average

Filters

- Sequence of weights a[j] is called a filter
- Filter is nonzero over its region of support
 - -usually centered on zero: support radius r
- Filter is normalized so that it sums to 1.0
 - -this makes for a weighted average, not just any old weighted sum
- Most filters are symmetric about 0
 - -since for images we usually want to treat left and right the same

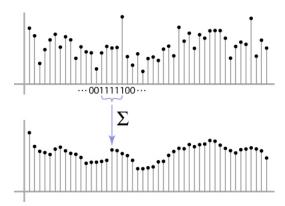


Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 21

Convolution and filtering

- Can express sliding average as convolution with a box filter
- $a_{\text{box}} = [..., 0, 1, 1, 1, 1, 1, 0, ...]$



Cornell CS4620/5620 Fall 2012 • Lecture 26

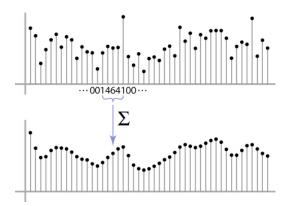
Example: box and step

Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 23 (with previous instructors James/Marschner)

Convolution and filtering

- Convolution applies with any sequence of weights
- Example: Bell curve (Gaussian-like) [..., I, 4, 6, 4, I, ...]/16



Cornell CS4620/5620 Fall 2012 • Lecture 26

And in pseudocode...

function convolve(sequence a, sequence b, int r, int i)

$$s=0$$
 for $j=-r$ to r
$$s=s+a[j]b[i-j]$$
 return s

Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 25

Discrete filtering in 2D

• Same equation, one more index

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

- now the filter is a rectangle you slide around over a grid of numbers
- Commonly applied to images
 - -blurring (using box, gaussian, ...)
 - -sharpening
- Usefulness of associativity
 - often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - -this is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$

Cornell CS4620/5620 Fall 2012 • Lecture 26

And in pseudocode...

function convolve2d(filter2d a, filter2d b, int i, int j)

$$s=0$$

 $r=a$.radius
for $i'=-r$ to r do
for $j'=-r$ to r do
 $s=s+a[i'][j']b[i-i'][j-j']$
return s

Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 27

Optimization: separable filters

- basic alg. is $O(r^2)$: large filters get expensive fast!
- definition: $a_2(x,y)$ is separable if it can be written as:

$$a_2[i,j] = a_1[i]a_1[j]$$

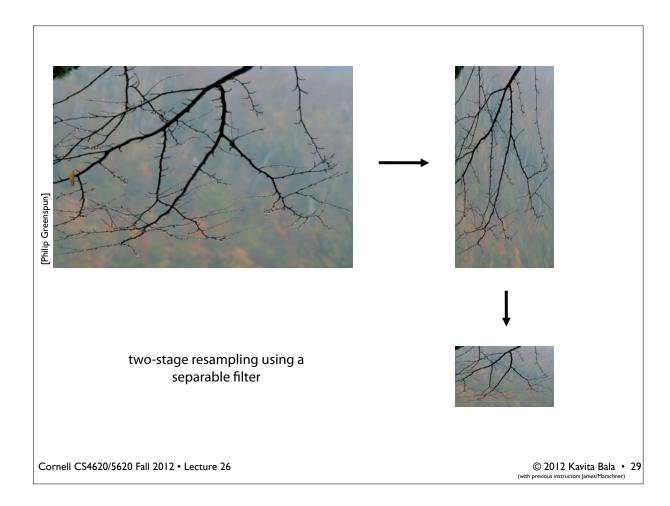
-this is a useful property for filters because it allows factoring:

$$(a_2 \star b)[i,j] = \sum_{i'} \sum_{j'} a_2[i',j']b[i-i',j-j']$$

$$= \sum_{i'} \sum_{j'} a_1[i']a_1[j']b[i-i',j-j']$$

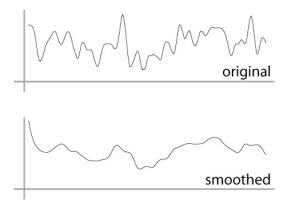
$$= \sum_{i'} a_1[i'] \left(\sum_{j'} a_1[j']b[i-i',j-j']\right)$$

Cornell CS4620/5620 Fall 2012 • Lecture 26



Continuous convolution

- Can apply sliding-window average to a continuous function just as well
 - -output is continuous
 - -integration replaces summation



Cornell CS4620/5620 Fall 2012 • Lecture 26

Continuous convolution

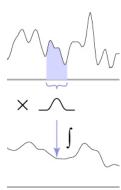
• Sliding average expressed mathematically:

$$g_{\text{smooth}}(x) = \frac{1}{2r} \int_{x-r}^{x+r} g(t)dt$$

- -note difference in normalization (only for box)
- Convolution just adds weights

$$(f \star g)(x) = \int_{-\infty}^{\infty} f(t)g(x - t)dt$$

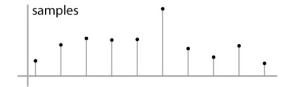
- -weighting is now by a function
- -weighted integral is like weighted average
- -again bounds are set by support of f(x)

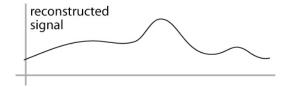


Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 31

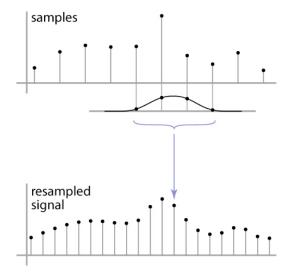
Continuous-discrete convolution





Resampling

- Reconstruction creates a continuous function
 - -forget its origins, go ahead and sample it



Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 33 (with previous instructors James/Marschner)

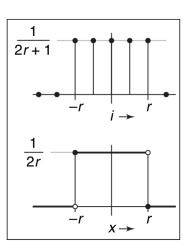
A gallery of filters

- Box filter
 - -Simple and cheap
- Tent filter
 - -Linear interpolation
- Gaussian filter
 - -Very smooth antialiasing filter
- B-spline cubic
 - -Very smooth

Box filter

$$a_{\text{box},r}[i] = \begin{cases} 1/(2r+1) & |i| \le r, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_{\text{box},r}(x) = \begin{cases} 1/(2r) & -r \le x < r, \\ 0 & \text{otherwise.} \end{cases}$$



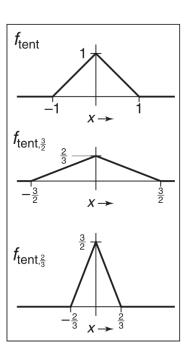
Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 35 (with previous instructors James/Marschner)

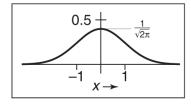
Tent filter

$$f_{\text{tent}}(x) = \begin{cases} 1 - |x| & |x| < 1, \\ 0 & \text{otherwise}; \end{cases}$$

$$f_{\text{tent},r}(x) = \frac{f_{\text{tent}}(x/r)}{r}.$$



Gaussian filter



$$f_g(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 37

Resampling

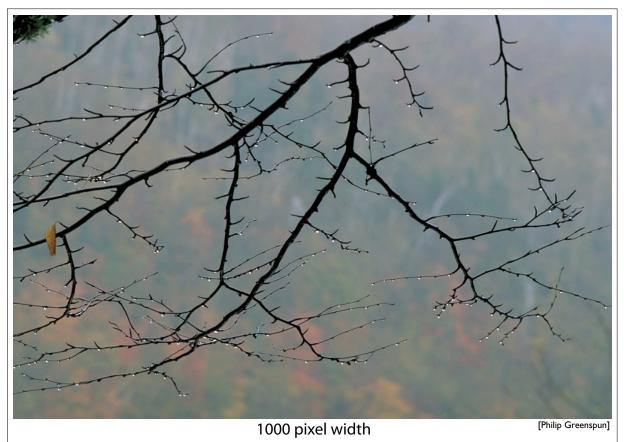
- Changing the sample rate
 - in images, this is enlarging and reducing
- Creating more samples:
 - -increasing the sample rate
 - -"upsampling"
 - -"enlarging"
- Ending up with fewer samples:
 - -decreasing the sample rate
 - -"downsampling"
 - -"reducing"

Reducing and enlarging

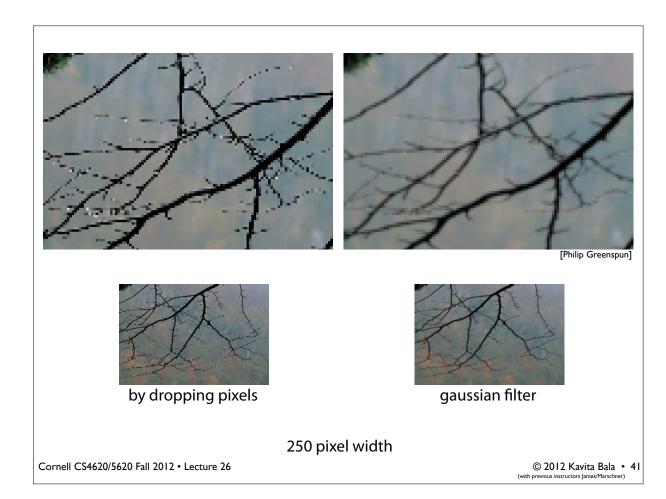
- Very common operation
 - -devices have differing resolutions
 - -applications have different memory/quality tradeoffs
- Also very commonly done poorly
- Simple approach: drop/replicate pixels
- Correct approach: use resampling

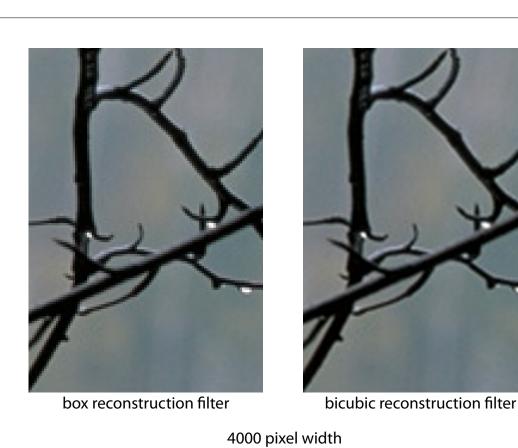
Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 39



Cornell CS4620/5620 Fall 2012 • Lecture 26





Cornell CS4620/5620 Fall 2012 • Lecture 26

Types of artifacts

- Garden variety
 - -what we saw in this natural image
 - -fine features become jagged or sparkle
- Moiré patterns
 - -caused by repetitive patterns in input
 - -produce large-scale artifacts; highly visible
- Aliasing
- How do I know what filter is best at preventing aliasing?
 - practical answer: experience
 - theoretical answer: there is another layer of cool math behind all this based on Fourier transforms

Again: Weighted filtering for line drawing

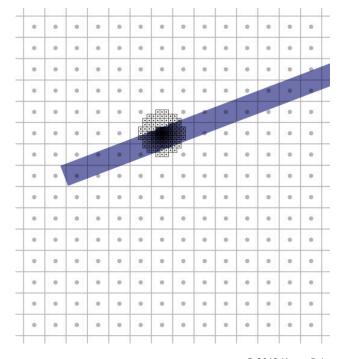
- Box filtering problem: treats area near edge same as area near center
 - -results in pixel turning on "too abruptly"
- Alternative: weight area by a smoother filter
 - -unweighted averaging corresponds to using a box function
 - -sharp edges mean high frequencies
 - so want a filter with good extinction for higher freqs.
 - -a Gaussian is a popular choice of smooth filter
 - -important property: normalization (unit integral)

Cornell CS4620/5620 Fall 2012 • Lecture 26

© 2012 Kavita Bala • 45

Weighted filtering by supersampling

- Compute filtering integral by summing filter values for covered subpixels
- Simple, accurate
- But really slow



Cornell CS4620/5620 Fall 2012 • Lecture 26

