CS4620/5620: Lecture 16

Programmable Shading and Meshes

Cornell CS4620/5620 Fall 2012 • Lecture 16

© 2012 Kavita Bala • (with previous instructors James/Marschner)

Announcements

- Prelim next Thursday
 - In the evening, closed book
 - -Including material of this week

Putting it together

• Usually include ambient, diffuse, Phong in one model

$$L = L_a + L_d + L_s$$

= $k_a I_a + k_d I \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s I \max(0, \mathbf{n} \cdot \mathbf{h})^n$

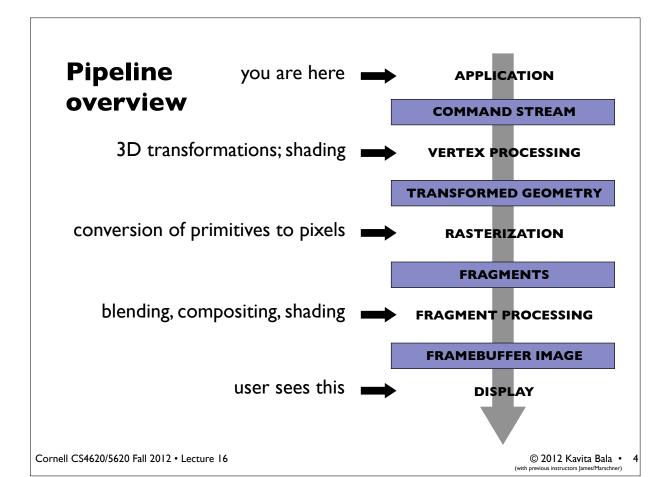
• The final result is the sum over many lights

$$L = L_a + \sum_{i=1}^{N} [(L_d)_i + (L_s)_i]$$

$$L = k_a I_a + \sum_{i=1}^{N} [k_d I_i \max(0, \mathbf{n} \cdot \mathbf{l}_i) + k_s I_i \max(0, \mathbf{n} \cdot \mathbf{h}_i)^n]$$

Cornell CS4620/5620 Fall 2012 • Lecture 16

© 2012 Kavita Bala • (with previous instructors James/Marschner)



Flat shading

- Shade using the real normal of the triangle
- Leads to constant shading and faceted appearance
 - truest view of the mesh geometry

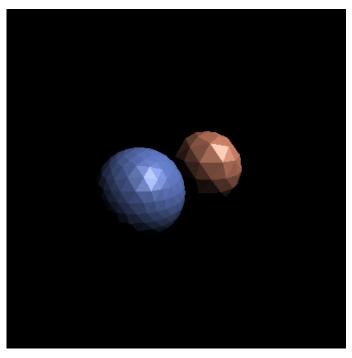
Cornell CS4620/5620 Fall 2012 • Lecture 16

(with previous instructors James/Marschner)

Pipeline for flat shading

- Vertex stage (input: position / vtx; color and normal / tri)
 - -transform position and normal (object to eye space)
 - -compute shaded color per triangle using normal
 - -transform position (eye to screen space)
- Rasterizer
 - -interpolated parameters: z' (screen z)
 - -pass through color
- Fragment stage (output: color, z')
 - -write to color planes only if interpolated z' < current z'

Result of flat-shading pipeline



Cornell CS4620/5620 Fall 2012 • Lecture 16

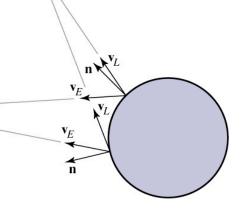
© 2012 Kavita Bala • 7
(with previous instructors lames/Marschner)

Local vs. infinite viewer, light

- Phong illumination requires geometric information:
 - -light vector (function of position)
 - -eye vector (function of position)
 - -surface normal (from application)

• Light and eye vectors change

need to be computed (and normalized) for each face



Cornell CS4620/5620 Fall 2012 • Lecture 16

© 2012 Kavita Bala •

8

Local vs. infinite viewer, light

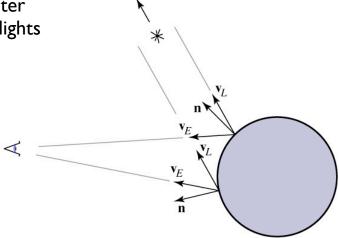
- Look at case when eye or light is far away:
 - distant light source: nearly parallel illumination
 - distant eye point: nearly orthographic projection
 - -in both cases, eye or light vector changes very little
- Optimization: approximate eye and/or light as infinitely far away

Cornell CS4620/5620 Fall 2012 • Lecture 16

© 2012 Kavita Bala •

Directional light

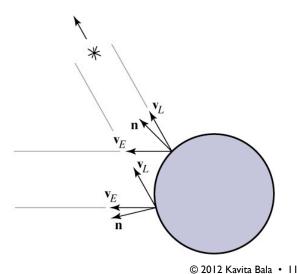
- Directional (infinitely distant) light source
 - -light vector always points in the same direction
 - often specified by $[x \ y \ z \ 0]$
 - -many pipelines are faster if you use directional lights



Cornell CS4620/5620 Fall 2012 • Lecture 16

Infinite viewer

- Orthographic camera
 - -projection direction is constant
- "Infinite viewer"
 - even with perspective,
 can approximate eye vector
 using the image plane normal
 - can produce weirdness for wide-angle views
 - Blinn-Phong:light, eye, half vectorsall constant!

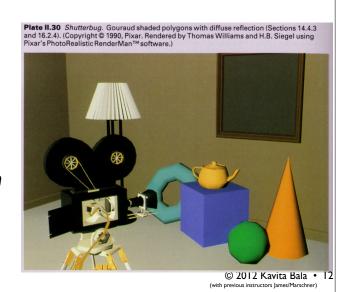


Cornell CS4620/5620 Fall 2012 • Lecture 16

with previous instructors lames/Marschner)

Gouraud interpolation

- Often we're trying to draw smooth surfaces, so facets are an artifact
 - compute colors at vertices using vertex normals
 - interpolate colors across triangles
 - "Gouraud shading"
 - Gouraud interpolation
 - "Smooth shading"
 - Phong interpolation



Cornell CS4620/5620 Fall 2012 • Lecture 16

Aside: naming

- Historical
 - -Gouraud interpolation, Phong interpolation
 - Different types of smooth shading
 - -Phong shading
 - Actually Phong reflectance model (diffuse, specular)
- Bad naming
 - -Gouraud shading: not really shading
 - Phong shading: ambiguous
- Correct
 - -Gouraud interpolation/shading, per-pixel shading

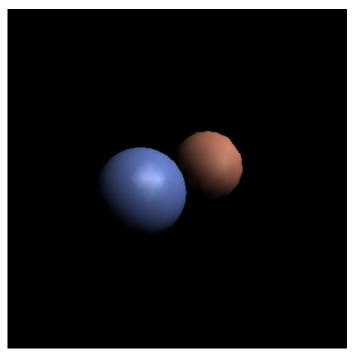
Cornell CS4620/5620 Fall 2012 • Lecture 16

© 2012 Kavita Bala • 13

Pipeline for Gouraud interpolation

- Vertex stage (input: position, color, and normal / vtx)
 - -transform position and normal (object to eye space)
 - -compute shaded color per vertex
 - -transform position (eye to screen space)
- Rasterizer
 - -interpolated parameters: z' (screen z); r, g, b color
- Fragment stage (output: color, z')
 - -write to color planes only if interpolated z' < current z'

Result of Gouraud shading pipeline



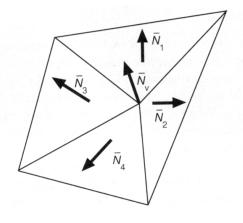
Cornell CS4620/5620 Fall 2012 • Lecture 16

© 2012 Kavita Bala • 15

Vertex normals

- Need normals at vertices to compute Gouraud interpolation
- Best to get vtx. normals from the underlying geometry
 - -e.g. spheres example
- Otherwise have to infer vtx.
 normals from triangles
 - simple scheme: average surrounding face normals

$$N_v = \frac{\sum_i N_i}{\|\sum_i N_i\|}$$



olev et a

Cornell CS4620/5620 Fall 2012 • Lecture 16

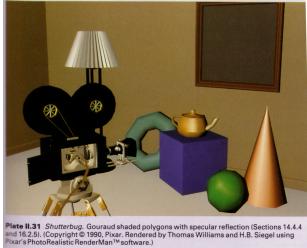
Non-diffuse Gouraud interpolation

- Can apply Gouraud interpolation to any illumination model
 - -it's just an interpolation method

Results are not so good with fast-varying models like

specular ones

-problems with any highlights smaller than a triangle

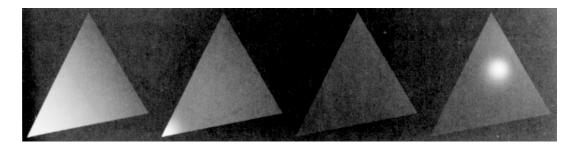


Cornell CS4620/5620 Fall 2012 • Lecture 16

© ZUIZ Kavita Baia • 17

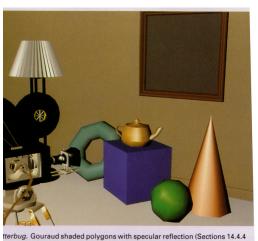
Per-pixel (Phong) interpolation

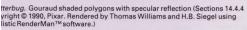
- Get higher quality by interpolating the normal
 - -just as easy as interpolating the color
 - -but now we are evaluating the illumination model per pixel rather than per vertex (and normalizing the normal first)
 - -in pipeline, this means we are moving illumination from the vertex processing stage to the fragment processing stage



Phong (per-pixel) interpolation

• Bottom line: produces much better highlights





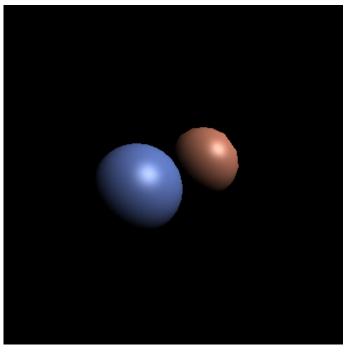
Cornell CS4620/5620 Fall 2012 • Lecture 16

© 2012 Kavita Bala • 19

Pipeline for per-pixel (Phong) interpolation

- Vertex stage (input: position, color, and normal / vtx)
 - -transform position and normal (object to eye space)
 - -transform position (eye to screen space)
 - -pass through color
- Rasterizer
 - -interpolated parameters: z' (screen z); r, g, b color; x, y, z normal
- Fragment stage (output: color, z')
 - -compute shading using interpolated color and normal
 - -write to color planes only if interpolated z' < current z'

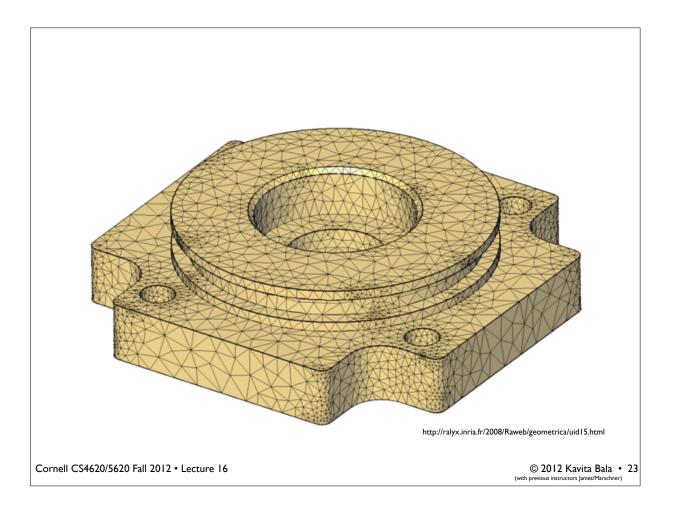
Result of per-pixel shading pipeline

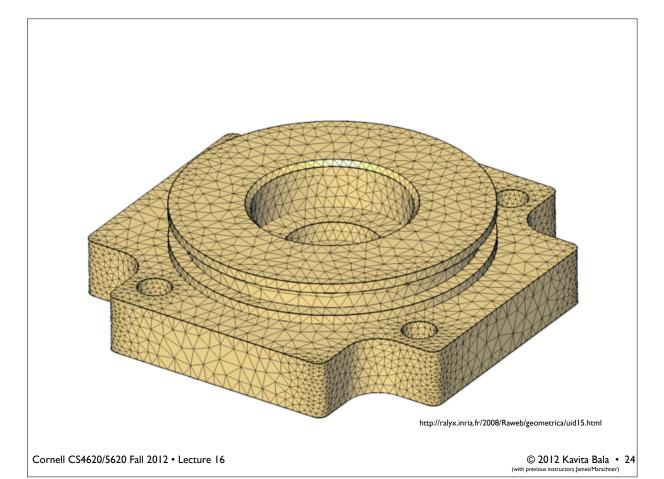


Cornell CS4620/5620 Fall 2012 • Lecture 16

© 2012 Kavita Bala • 21 (with previous instructors James/Marschner)

Meshes





Aspects of meshes

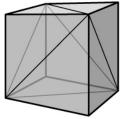
- in many cases we care about the mesh being able to bound a region of space nicely
- in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)
- two completely separate issues:
 - topology: how the triangles are connected (ignoring the positions entirely)
 - -geometry: where the triangles are in 3D space

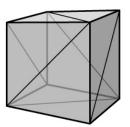
Cornell CS4620/5620 Fall 2012 • Lecture 16

© 2012 Kavita Bala • 25 (with previous instructors lames/Marschner)

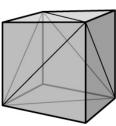
Topology/geometry examples

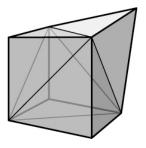
• same geometry, different mesh topology:





• same mesh topology, different geometry:

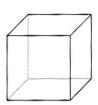




Cornell CS4620/5620 Fall 2012 • Lecture 16

Notation

- $n_T = \# tris; n_V = \# verts; n_E = \# edges$
- Euler: $n_V n_E + n_T = 2$ for a simple closed surface
 - -and in general sums to small integer



V = 8 E = 12 F = 6

V = 5 E = 8 F = 5

[Foley et al.]

Cornell CS4620/5620 Fall 2012 • Lecture 16

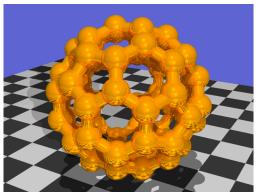
© 2012 Kavita Bala • 27 (with previous instructors James/Marschner)

Examples of simple convex polyhedra

Name	Image	Vertices V	Edges <i>E</i>	Faces	Euler characteristic: V - E + F
Tetrahedron		4	6	4	2
Hexahedron or cube		8	12	6	2
Octahedron		6	12	8	2
Dodecahedron		20	30	12	2
Icosahedron		12	30	20	2

http://en.wikipedia.org/wiki/Euler_characteristic

Examples of simple convex polyhedra



Buckyball

V = 60

E = 90

F = 32 (12 pentagons + 20 hexagons)

$$V - E + F = 60 - 90 + 32 = 2$$

Cornell CS4620/5620 Fall 2012 • Lecture 16

© 2012 Kavita Bala • 29 (with previous instructors James/Marschner)

Examples (nonconvex polyhedra!)

Name	Image	Vertices V	Edges <i>E</i>	Faces	Euler characteristic: V - E + F
Tetrahemihexahedron		6	12	7	1
Octahemioctahedron		12	24	12	0
Cubohemioctahedron		12	24	10	-2
Great icosahedron		12	30	20	2

http://en.wikipedia.org/wiki/Euler_characteristic

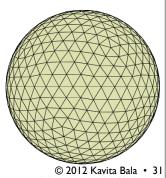
Cornell CS4620/5620 Fall 2012 • Lecture 16

Euler's Formula

- n_V = #verts; n_E = #edges; n_F = #faces
- Euler's Formula for a convex polyhedron:

$$n_V - n_E + n_F = 2$$

- Other meshes often sum to small integer
 - -argument for implication that $n_V:n_F:n_F$ is about 1:3:2



Cornell CS4620/5620 Fall 2012 • Lecture 16

Representation of triangle meshes

- Compactness
- Efficiency for rendering
 - -enumerate all triangles as triples of 3D points
- Efficiency of queries
 - -all vertices of a triangle
 - -all triangles around a vertex
 - neighboring triangles of a triangle
 - (need depends on application)
 - finding triangle strips
 - computing subdivision surfaces
 - mesh editing

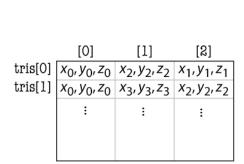
Representations for triangle meshes

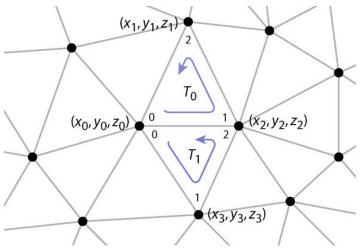
- Separate triangles
- Indexed triangle set
 - shared vertices
- Triangle strips and triangle fans
 - -compression schemes for transmission to hardware
- Triangle-neighbor data structure
 - supports adjacency queries
- Winged-edge data structure
 - -supports general polygon meshes

Cornell CS4620/5620 Fall 2012 • Lecture 16

© 2012 Kavita Bala • 33

Separate triangles





Cornell CS4620/5620 Fall 2012 • Lecture 16

Separate triangles

- array of triples of points
 - -float[n_T][3][3]: about 72 bytes per vertex
 - 2 triangles per vertex (on average)
 - 3 vertices per triangle
 - 3 coordinates per vertex
 - 4 bytes per coordinate (float)
- various problems
 - -wastes space (each vertex stored 6 times)
 - cracks due to roundoff
 - -difficulty of finding neighbors at all

Cornell CS4620/5620 Fall 2012 • Lecture 16