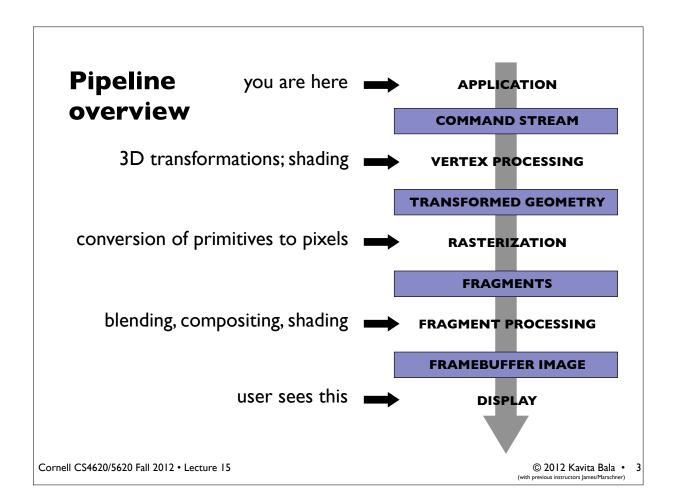
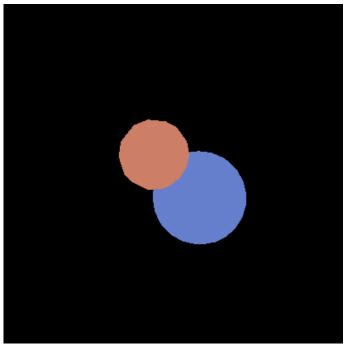
CS4620/5620: Lecture 15

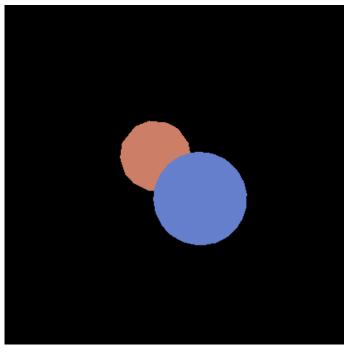

Programmable Shading

Cornell CS4620/5620 Fall 2012 • Lecture 15


© 2012 Kavita Bala • (with previous instructors James/Marschner)

Announcements

- HW I back
- HW 2 out
 - Due next Friday
 - Due date?



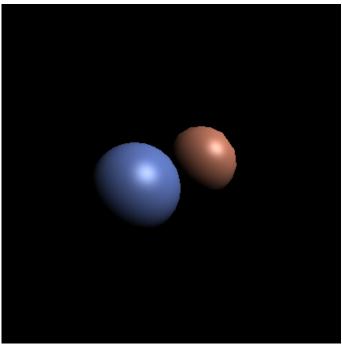
Result of minimal pipeline (no z test)

Cornell CS4620/5620 Fall 2012 • Lecture 15


Result of z-buffer pipeline

Cornell CS4620/5620 Fall 2012 • Lecture 15

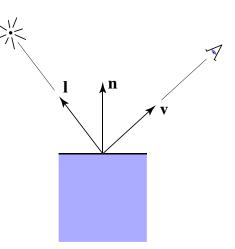
© 2012 Kavita Bala • 5 (with previous instructors James/Marschner)


Result of flat-shading pipeline

Cornell CS4620/5620 Fall 2012 • Lecture 15

© 2012 Kavita Bala • 6 (with previous instructors James/Marschner)

Result of Phong shading pipeline

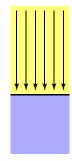

Cornell CS4620/5620 Fall 2012 • Lecture 15

© 2012 Kavita Bala • 7 (with previous instructors James/Marschner)

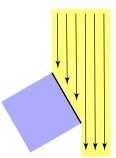
How to achieve shading?

Shading

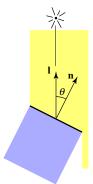
- Compute light reflected toward camera
- Inputs:
 - eye direction
 - -light direction and light intensity (for each of many lights)
 - -surface normal
 - surface parameters (color, shininess, ...)



Cornell CS4620/5620 Fall 2012 • Lecture 15

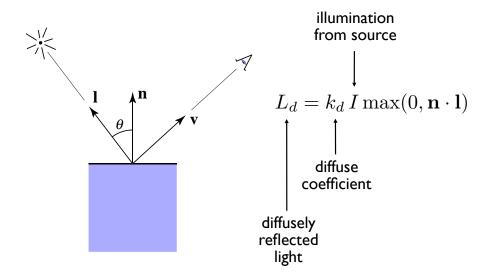

© 2012 Kavita Bala • (with previous instructors lames/Marschner)

Diffuse reflection


- Light is scattered uniformly in all directions
 - -the surface color is the same for all viewing directions
- Lambert's cosine law

Top face of cube receives a certain amount of light

Top face of 60° rotated cube intercepts half the light

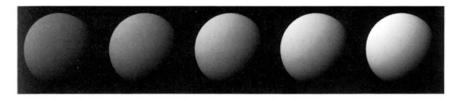

In general, light per unit area is proportional to $\cos \theta = \mathbf{I} \cdot \mathbf{n}$

Cornell CS4620/5620 Fall 2012 • Lecture 15

© 2012 Kavita Bala • 10

Lambertian shading

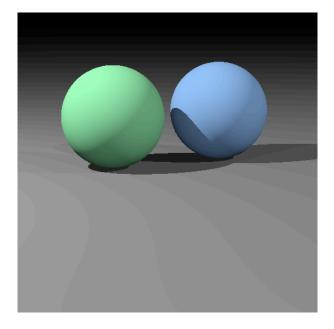
• Shading independent of view direction



Cornell CS4620/5620 Fall 2012 • Lecture 15

© 2012 Kavita Bala • 11 (with previous instructors James/Marschner)

Lambertian shading


• Produces matte appearance

 k_d ——

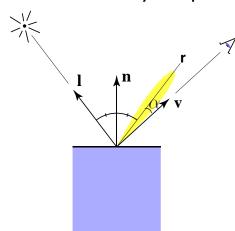
oley et al.]

Diffuse shading

Cornell CS4620/5620 Fall 2012 • Lecture 15

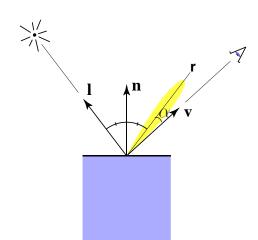
© 2012 Kavita Bala • 13 (with previous instructors James/Marschner)

Light


- Local light
 - -Position
- Directional light (e.g., sun)
 - -Direction, no position

Specular shading (Phong)

- Intensity depends on view direction
 - -bright near mirror configuration
 - -measure "near" by dot product of unit vectors


$$cos(\alpha) = v.r$$

Cornell CS4620/5620 Fall 2012 • Lecture 15

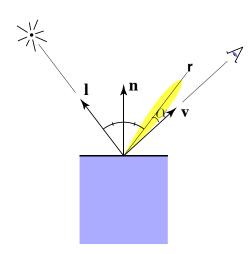
© 2012 Kavita Bala • 15

Specular shading (Phong)

- Intensity depends on view direction
 - -bright near mirror configuration

$$L_s = k_s I \max(0, \cos \alpha)^n$$

$$\cos(\alpha) = \mathbf{v.r}$$

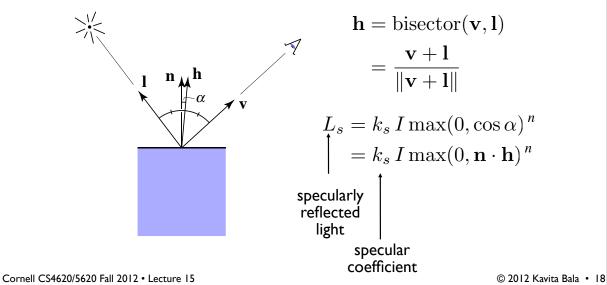

$$L_s = k_s I \max(0, \mathbf{v.r})^n$$

Cornell CS4620/5620 Fall 2012 • Lecture 15

© 2012 Kavita Bala • 16

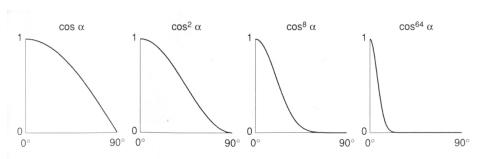
Reflected direction

- Intensity depends on view direction
 - -reflects incident light from mirror direction


$$r = 2(n.l)n - l$$

Cornell CS4620/5620 Fall 2012 • Lecture 15

© 2012 Kavita Bala • 17


Specular shading (Blinn-Phong)

• Close to mirror ⇔ half vector near normal

Phong model—plots

• Increasing n narrows the lobe

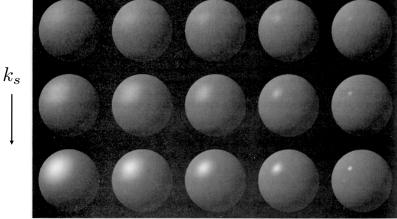
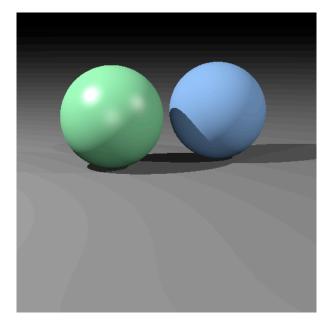


Fig. 16.9 Different values of $\cos^n \alpha$ used in the Phong illumination model.

Cornell CS4620/5620 Fall 2012 • Lecture 15

© 2012 Kavita Bala • 19 (with previous instructors James/Marschner)

Specular shading


n —

Cornell CS4620/5620 Fall 2012 • Lecture 15

© 2012 Kavita Bala • 20

[Foley

Diffuse + Phong shading

Cornell CS4620/5620 Fall 2012 • Lecture 15

© 2012 Kavita Bala • 21

Multiple lights

- Just loop over lights, add contributions
- Important to fill in black shadows
- Ambient shading
 - -black shadows are not really right
 - -one solution: dim light at camera
 - -alternative: add a constant "ambient" color to the shading...

Ambient shading

- Shading that does not depend on anything
 - add constant color to account for disregarded illumination and fill in black shadows

Cornell CS4620/5620 Fall 2012 • Lecture 15

© 2012 Kavita Bala • 23 (with previous instructors James/Marschner)

Putting it together

• Usually include ambient, diffuse, Phong in one model

$$L = L_a + L_d + L_s$$

= $k_a I_a + k_d I \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s I \max(0, \mathbf{n} \cdot \mathbf{h})^n$

The final result is the sum over many lights

$$L = L_a + \sum_{i=1}^{N} [(L_d)_i + (L_s)_i]$$

$$L = k_a I_a + \sum_{i=1}^{N} [k_d I_i \max(0, \mathbf{n} \cdot \mathbf{l}_i) + k_s I_i \max(0, \mathbf{n} \cdot \mathbf{h}_i)^n]$$

Cornell CS4620/5620 Fall 2012 • Lecture 15

© 2012 Kavita Bala • 24