CS4620/5620

Affine and 3D Transformations

Professor: Kavita Bala

Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • (with previous instructors lames/Marschner)

Announcements

- Updated schedule on course web page
 - -2 Prelim days finalized and posted
 - Oct 11, Nov 29
 - -No final exam, final project will be due in the week of finals
- First homework will be out this weekend

Linear transformations using matrices

 One way to define a transformation is by matrix multiplication:

$$T(\mathbf{v}) = M\mathbf{v}$$

• Such transformations are linear, which is to say:

$$T(a\mathbf{u} + \mathbf{v}) = aT(\mathbf{u}) + T(\mathbf{v})$$

(and in fact all linear transformations can be written this way)

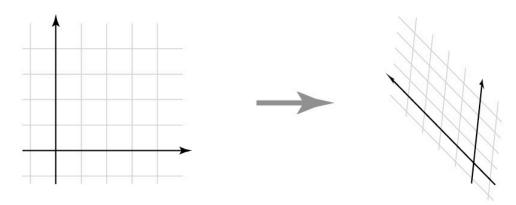
• Translation cannot be represented by linear transforms

Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • 3
(with previous instructors lames/Marschner)

Affine transformations

- The set of transformations we are interested in is known as the "affine" transformations
 - straight lines preserved; parallel lines preserved
 - ratios of lengths along lines preserved (midpoints preserved)



Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala •

Transforming points and vectors

- Homogeneous coords. lets us handle points and vectors
 - -just put 0 rather than I in the last place

$$\begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} M\mathbf{p} + \mathbf{t} \\ 1 \end{bmatrix} \quad \begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} M\mathbf{v} \\ 0 \end{bmatrix}$$

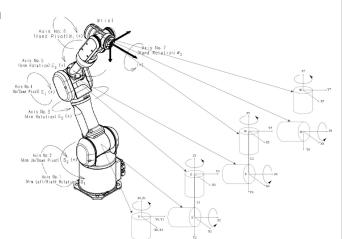
Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • (with previous instructors lames/Marschner)

Coordinate Systems

- Bases
 - -Expressing vectors in different bases
- Motivation
 - -Global coordinate system
 - -Local coordinate system

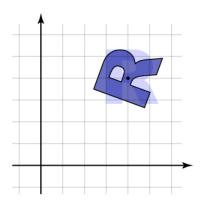
Cornell CS4620/5620 Fall 2012 • Lecture 4



5

Composing to change axes

- Want to rotate about a particular point
 - -could work out formulas directly...
- Know how to rotate about the origin
 - -so translate that point to the origin



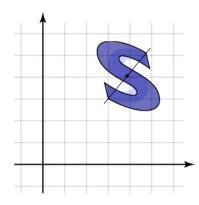
$$M = T^{-1}RT$$

Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala •

Composing to change axes

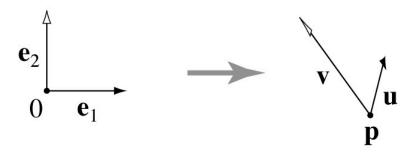
- Want to scale along a particular axis and point
- Know how to scale along the y axis at the origin
 - -so translate to the origin and rotate to align axes



$$M = T^{-1}R^{-1}SRT$$

Another way of thinking about this

• Affine change of coordinates

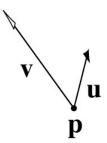


Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • with previous instructors James/Marschner)

Affine change of coordinates

- Coordinate frame: point plus basis
- Need to change representation of point from one basis to another
- Canonical: origin (0,0) w/ axes e1, e2



- "Frame to canonical" transformation
- Seems backward but worth thinking about

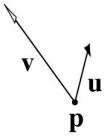
On the Board

Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • 11

Affine change of coordinates

- Coordinate frame: point plus basis
- Need to change representation of point from one basis to another
- Canonical: origin (0,0) w/ axes e1, e2

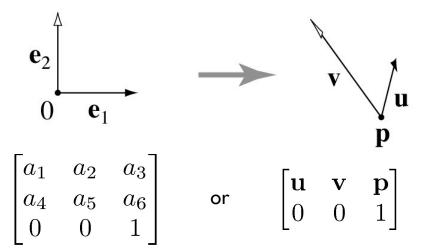


- "Frame to canonical" matrix has frame in columns
 - -takes points represented in frame
 - -represents them in canonical basis

$$\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{p} \\ 0 & 0 & 1 \end{bmatrix}$$

Another way of thinking about this

- Affine change of coordinates
 - -Six degrees of freedom



Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • 13

Affine change of coordinates

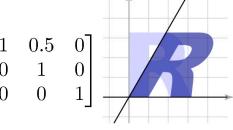
- When we move an object to the origin to apply a transformation, we are really changing coordinates
 - -the transformation is easy to express in object's frame
 - -so define it there and transform it

$$T_e = FT_F F^{-1}$$

- $-T_e$ is the transformation expressed wrt. e_1 , e_2 (canonical, world)
- $-T_F$ is the transformation expressed in natural (local) frame
- -F is the frame-to-canonical matrix $[u \ v \ p]$
- This is a similarity matrix

Affine change of coordinates

- A new way to "read off" the matrix
 - -e.g. shear from earlier
 - can look at picture, see effect on basis vectors, write down matrix



- Also an easy way to construct transforms
 - -e.g. scale by 2 across direction (1,2)

Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • 15

Coordinate frame summary

- Frame = point plus basis
- Frame matrix (frame-to-canonical) is

$$F = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{p} \\ 0 & 0 & 1 \end{bmatrix}$$

• Move points to and from frame by multiplying with F

$$p_e = F p_F \quad p_F = F^{-1} p_e$$

Move transformations

$$T_e = FT_F F^{-1} \quad T_F = F^{-1} T_e F$$

Orthonormal frames in 3D

- Useful tools for constructing transformations
- Recall rigid motions
 - -affine transforms with pure rotation
 - -columns (and rows) form right-handed ONB
 - that is, an orthonormal basis

$$F = \begin{bmatrix} u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z \end{bmatrix}$$

$$F = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{p} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • 17
(with previous instructors lames/Marschner)

Fun and important aside: How to build 3D frames

- Given a vector a, define a frame with one axis parallel to a
 - -Given a secondary vector **b**
 - The u axis should be parallel to a, the u-v plane should contain b

- Given just a vector **a**
 - -The \mathbf{u} axis should be parallel to \mathbf{a} ; don't care about orientation about that axis
 - Same process but choose arbitrary **b** first
 - Good choice is not near a: e.g. set smallest entry to I

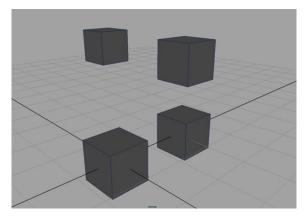
3D Transformations

Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • 19 (with previous instructors James/Marschner)

Translation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



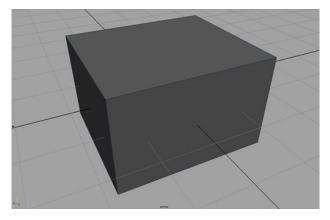
Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • 20

(with previous instructors James/Marschner)

Scaling

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

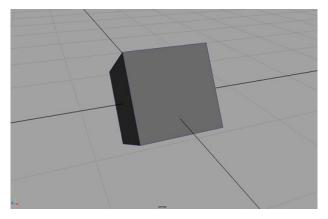


Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • 21 (with previous instructors James/Marschner)

Rotation about z axis

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

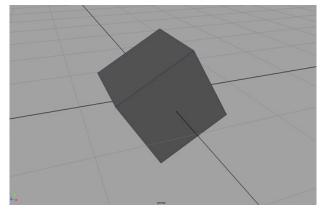


Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • 22

Rotation about x axis

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

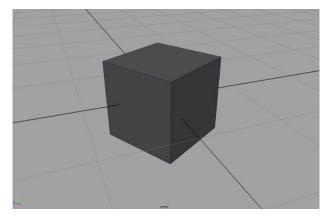


Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • 23 (with previous instructors James/Marschner)

Rotation about y axis

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



Cornell CS4620/5620 Fall 2012 • Lecture 4

© 2012 Kavita Bala • 24