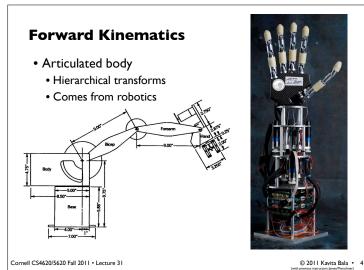
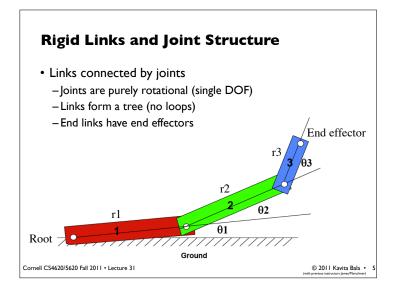
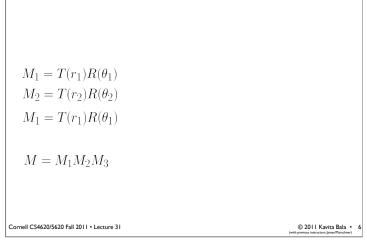
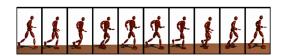

CS4620/5620: Lecture 31 Animation Cornell C54620/5620 Fall 2011 • Lecture 31 © 2011 Kavita Bala • 1 (onth provious immunicus) Josep Phencierus


Animation


- Forward Kinematics
- Inverse Kinematics
- Forward Dynamics
- Inverse Dynamics
- Motion Capture


Cornell CS4620/5620 Fall 2011 • Lecture 31

© 2011 Kavita Bala • :


Animation

- Forward Kinematics
- Inverse Kinematics
- Forward Dynamics
- Inverse Dynamics
- Motion Capture

Cornell CS4620/5620 Fall 2011 • Lecture 31

© 2011 Kavita Bala •

Motion capture

• A method for creating complex motion quickly: measure it from the real world

[thanks to Zoran Popović for many visuals]

Cornell CS4620/5620 Fall 2011 • Lecture 31

© 2011 Kavita Bala • 8

Motion capture in movies

© 2011 Kavita Bala •

Motion capture in games

Cornell CS4620/5620 Fall 2011 • Lecture 31

© 2011 Kavita Bala • 10

Magnetic motion capture

- Tethered
- Nearby metal objects cause distortions
- Low freq. (60Hz)

Cornell C\$4620/5620 Fall 2011 • Lecture 31

© 2011 Kavita Bala • 11

Mechanical motion capture

- · Measures joint angles directly
- · Works in any environment
- Restricts motion

Cornell CS4620/5620 Fall 2011 • Lecture 31

© 2011 Kavita Bala • 12

Optical motion capture

 Passive markers on subject

Retroreflective markers

Cornell CS4620/5620 Fall 2011 • Lecture 31

Cameras with IR illuminators

- Markers observed by cameras
 - Positions via triangulation

© 2011 Kavita Bala • 13

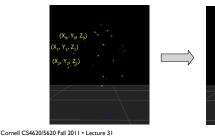
Optical motion capture

- 8 or more cameras
- Restricted volume
- High frequency (240Hz)
- Occlusions are troublesome

Cornell C\$4620/5620 Fall 2011 • Lecture 31

© 2011 Kavita Bala • 14

• 70 cameras, reflective dots, lightweight suit



Cornell CS4620/5620 Fall 2011 • Lecture 31

© 2011 Kavita Bala • 15

From marker data to usable motion

- Motion capture system gives inconvenient raw data
 - -Optical is "least information" case: accurate position but:
 - · Which marker is which?
 - Where are the markers relative to the skeleton?

© 2011 Kavita Bala • 16

Motion capture data processing

- · Marker identification: which marker is which
 - -Start with standard rest pose
 - Track forward through time (but watch for markers dropping out due to occlusion!)
- Calibration: match skeleton, find offsets to markers
 - -Use a short sequence that exercises all DOFs of the subject
 - -A nonlinear minimization problem
- · Computing joint angles: explain data using skeleton DOFs
 - An inverse kinematics problem per frame!

Motion capture in context

- Mocap data is very realistic
 - Timing matches performance exactly
 - -Dimensions are exact
- Therefore mocap data is generally a starting point for skilled animators to create the final product

Cornell CS4620/5620 Fall 2011 • Lecture 31

© 2011 Kavita Bala • 17

Cornell CS4620/5620 Fall 2011 • Lecture 31

© 2011 Kavita Bala • 18

Motion capture in context

- But it is not enough for good character animation
 - -Too few DOFs
 - -Noise, errors from nonrigid marker mounting
 - -Contains no exaggeration
 - -Only applies to human-shaped characters

Cornell CS4620/5620 Fall 2011 • Lecture 31

© 2011 Kavita Bala • 19

Kinect: Xbox 360

• Camera and IR

Cornell CS4620/5620 Fall 2011 • Lecture 31

© 2011 Kavita Bala • 20