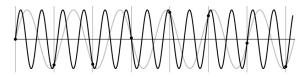
CS4620/5620: Lecture 25

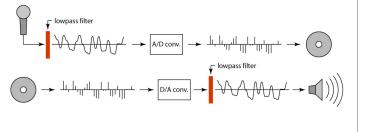

Sampling and Antialiasing

Cornell CS4620/5620 Fall 2011 • Lecture 25

© 2011 Kavita Bala •
ous instructors lames/Marschner and some slides courtesy Leonard McMilan)

Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - -unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - -also was always indistinguishable from higher frequencies
 - aliasing: signals "traveling in disguise" as other frequencies

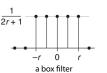


Cornell CS4620/5620 Fall 2011 • Lecture 25

© 2011 Kavita Bala • 2

Preventing aliasing

- Introduce lowpass filters:
 - remove high frequencies leaving only safe, low frequencies
 - -choose lowest frequency in reconstruction (disambiguate)

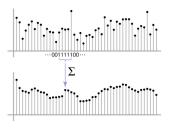


Cornell CS4620/5620 Fall 2011 • Lecture 25

© 2011 Kavita Bala • 3
instructors James/Marschner, and some slides courtesy Leonard McMilan)

Filters

- Sequence of weights a[j] is called a filter
- Filter is nonzero over its region of support
 - usually centered on zero: support radius r
- Filter is normalized so that it sums to 1.0
 - this makes for a weighted average, not just any old weighted sum
- Most filters are symmetric about 0
 - since for images we usually want to treat left and right the same



Cornell CS4620/5620 Fall 2011 • Lecture 25

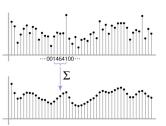
© 2011 Kavita Bala • vious instructors James/Marschner, and some slides courtesy Leonard McMilan)

Convolution and filtering

- · Can express sliding average as convolution with a box filter
- $a_{\text{box}} = [..., 0, 1, 1, 1, 1, 1, 0, ...]$

Cornell CS4620/5620 Fall 2011 • Lecture 25

© 2011 Kavita Bala • 5 James/Marschner, and some slides courtesy Leonard McMilan)


Example: box and step

ornell CS4620/5620 Fall 2011 • Lecture 25

Convolution and filtering

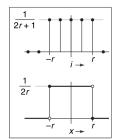
- · Convolution applies with any sequence of weights
- Example: Bell curve (Gaussian-like) [..., I, 4, 6, 4, I, ...]/16

Cornell CS4620/5620 Fall 2011 • Lecture 25

© 2011 Kavita Bala • 7

A gallery of filters

- · Box filter
 - -Simple and cheap
- Tent filter
 - -Linear interpolation
- · Gaussian filter
 - Very smooth antialiasing filter
- B-spline cubic
 - -Very smooth

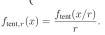

Cornell CS4620/5620 Fall 2011 • Lecture 25

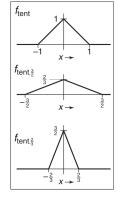
© 2011 Kavita Bala •

Box filter

$$a_{\mathrm{box},r}[i] = \begin{cases} 1/(2r+1) & |i| \le r, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_{\text{box},r}(x) = \begin{cases} 1/(2r) & -r \le x < r, \\ 0 & \text{otherwise.} \end{cases}$$



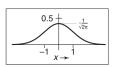

Cornell CS4620/5620 Fall 2011 • Lecture 25

© 2011 Kavita Bala •

Tent filter

$$f_{\text{tent}}(x) = \begin{cases} 1 - |x| & |x| < 1, \\ 0 & \text{otherwise}; \end{cases}$$

$$f_{\text{tent},r}(x) = \frac{f_{\text{tent}}(x/r)}{r}.$$



Cornell CS4620/5620 Fall 2011 • Lecture 25

© 2011 Kavita Bala • 10

Gaussian filter

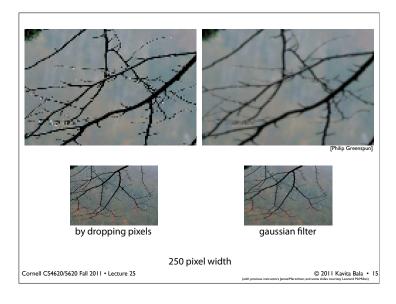
$$f_g(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Cornell CS4620/5620 Fall 2011 • Lecture 25

© 2011 Kavita Bala • 11

Resampling

- · Changing the sample rate
 - in images, this is enlarging and reducing
- Creating more samples:
 - -increasing the sample rate
 - -"upsampling"
 - -"enlarging"
- Ending up with fewer samples:
 - decreasing the sample rate
 - -"downsampling"
 - -"reducing"


Reducing and enlarging

- Very common operation
 - devices have differing resolutions
 - -applications have different memory/quality tradeoffs
- Also very commonly done poorly
- Simple approach: drop/replicate pixels
- · Correct approach: use resampling

Cornell CS4620/5620 Fall 2011 • Lecture 25

© 2011 Kavita Bala • 13

Types of artifacts

- · Garden variety
 - -what we saw in this natural image
 - -fine features become jagged or sparkle
- Moiré patterns
 - -caused by repetitive patterns in input
 - produce large-scale artifacts; highly visible
- These artifacts are aliasing just like in the audio example earlier
- How do I know what filter is best at preventing aliasing?
 - practical answer: experience
 - -theoretical answer: there is another layer of cool math behind all this

Cornell CS4620/5620 Fall 2011 • Lecture 25 © 2011 Kavita Bala • 17

Antialiasing

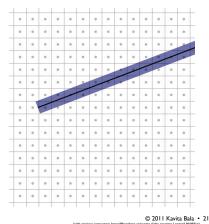
Cornell CS4620/5620 Fall 2011 • Lecture 25

Aliasing point sampling a continuous image: continuous image defined by ray tracing procedure continuous image defined by a bunch of black rectangles

Antialiasing

- · A name for techniques to prevent aliasing
- · In image generation, we need to lowpass filter
 - -Sampling the convolution of filter & image
 - Boils down to averaging the image over an area
 - -Weight by a filter
- Methods depend on source of image
 - Rasterization (lines and polygons)
 - -Point sampling (e.g. ray tracing)
 - Texture mapping

Cornell CS4620/5620 Fall 2011 • Lecture 25

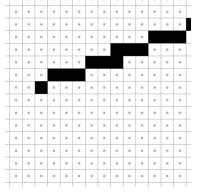

© 2011 Kavita Bala • 20

Rasterizing lines

• Define line as a rectangle

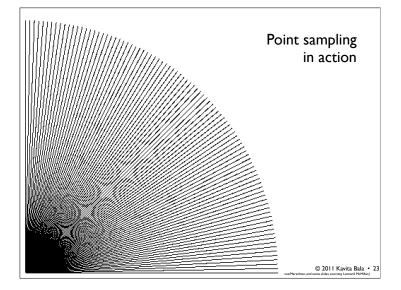
Cornell CS4620/5620 Fall 2011 • Lecture 25

- Specify by two endpoints
- Ideal image: black inside, white outside

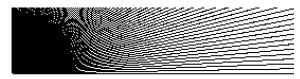


© 2011 Kavita Bala • 19

Cornell CS4620/5620 Fall 2011 • Lecture 25


Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: all-ornothing leads to jaggies
 - this is sampling with no filter (aka. point sampling)


Cornell CS4620/5620 Fall 2011 • Lecture 25

© 2011 Kavita Bala • 22 th previous instructors James/Marschner, and some slides courcesy Leonard McMilan)

Aliasing

- · Point sampling is fast and simple
- But the lines have stair steps and variations in width
- This is an aliasing phenomenon
 - -Sharp edges of line contain high frequencies
- Introduces features to image that are not supposed to be there!

Cornell CS4620/5620 Fall 2011 • Lecture 25

Antialiasing

- · Point sampling makes an all-or-nothing choice in each pixel
 - -therefore steps are inevitable when the choice changes
 - discontinuities are bad
- On bitmap devices this is necessary
 - hence high resolutions required
 - -600+ dpi in laser printers to make aliasing invisible
- On continuous-tone devices we can do better

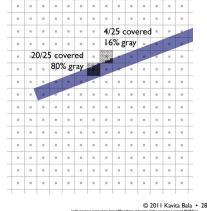
Cornell CS4620/5620 Fall 2011 • Lecture 25

© 2011 Kavita Bala • 25

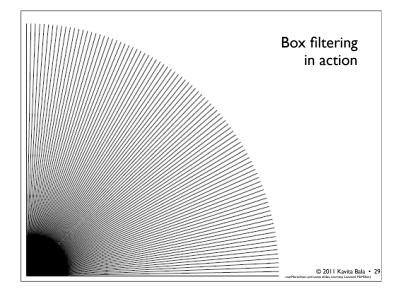
Antialiasing • Basic idea: replace "is the image black at the pixel center?" with "how much is pixel covered by black?" • Replace yes/no question with quantitative question.

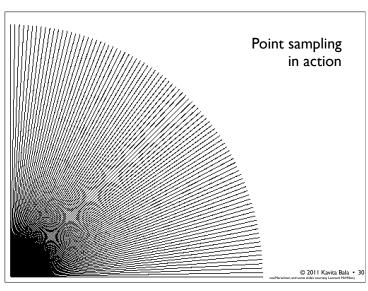
Cornell CS4620/5620 Fall 2011 • Lecture 25

Box filtering


- Pixel intensity is proportional to area of overlap with square pixel area
- · Also called "unweighted area averaging"

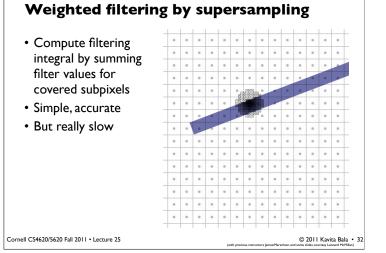
Cornell CS4620/5620 Fall 2011 • Lecture 25

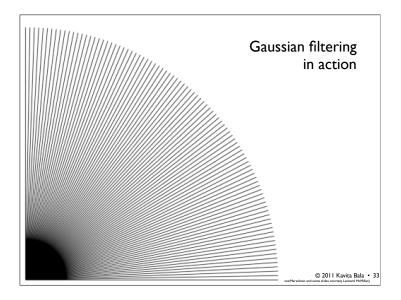

© 2011 Kavita Bala • 27

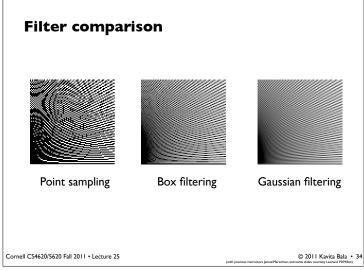

Box filtering by supersampling

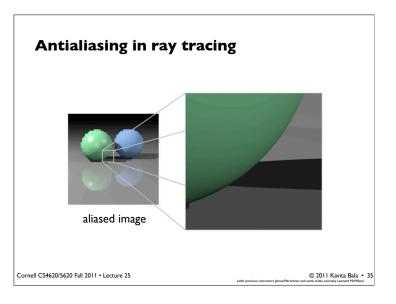
- Compute coverage fraction by counting subpixels
- Simple, accurate
- But slow

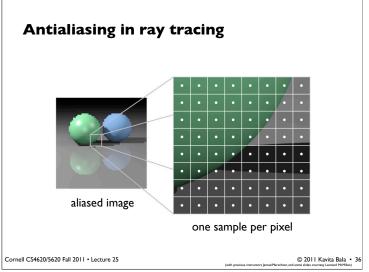
Cornell CS4620/5620 Fall 2011 • Lecture 25

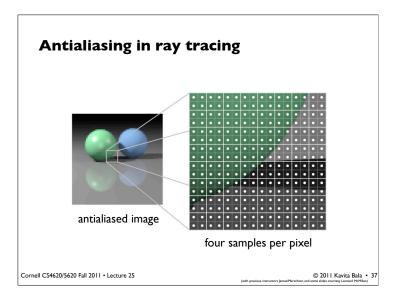


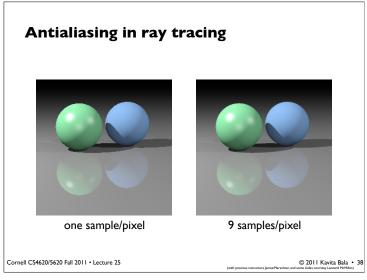


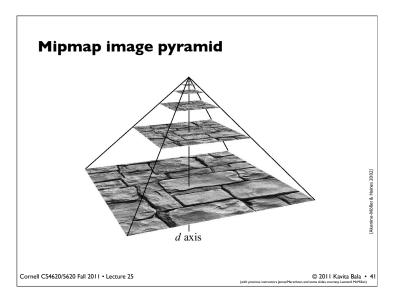

Weighted filtering

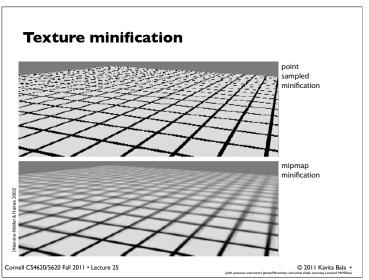

- Box filtering problem: treats area near edge same as area near center
 - results in pixel turning on "too abruptly"
- Alternative: weight area by a smoother filter
 - -unweighted averaging corresponds to using a box function
 - -sharp edges mean high frequencies
 - so want a filter with good extinction for higher freqs.
 - -a Gaussian is a popular choice of smooth filter
 - -important property: normalization (unit integral)

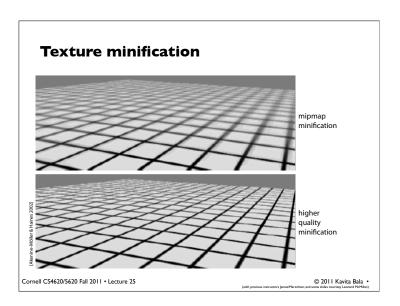

Cornell CS4620/5620 Fall 2011 • Lecture 25






Details of supersampling


Cornell CS4620/5620 Fall 2011 • Lecture 25


• For image coordinates with integer pixel centers:

© 2011 Kavita Bala • 39

Antialiasing in textures • Would like to render textures with one (or few) s/p • Need to filter first! - perspective produces very high image frequencies Cornell CS4620/5620 Fall 2011 • Lecture 25

