#### CS4620/5620: Lecture 23

Texture Mapping

Cornell CS4620/5620 Fall 2011 • Lecture 23

© 2011 Kavita Bala •
rious instructors James/Marschner, and some slides courtesy Leonard McMillan)

#### **Another definition**

**Texture mapping:** a general technique for storing and evaluating functions.

• They're not just for shading parameters any more!

Cornell CS4620/5620 Fall 2011 • Lecture 23

© 2011 Kavita Bala • 2

# Texture mapping from 0 to infinity

• When you go close...



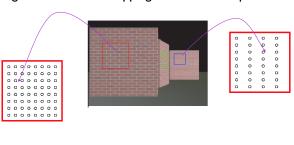


Cornell CS4620/5620 Fall 2011 • Lecture 23

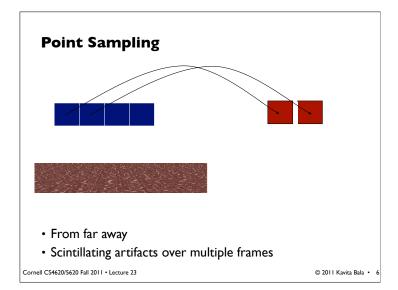
© 2011 Kavita Bala • 3

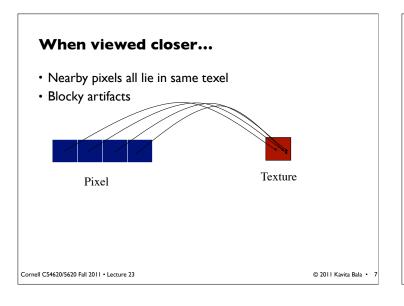
## When viewed from a distance

· Aliasing!




Cornell CS4620/5620 Fall 2011 • Lecture 23


© 2011 Kavita Bala •


# What is going on?

• Image-based texture mapping is resolution dependent



Cornell CS4620/5620 Fall 2011 • Lecture 23 © 2011 Kavita Bala • 5

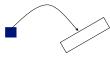




## What is really the issue?

- A pixel is not a point
  - It is an area!
- Each pixel maps to some region of texture space
- Ideally, we want to integrate over mapped area

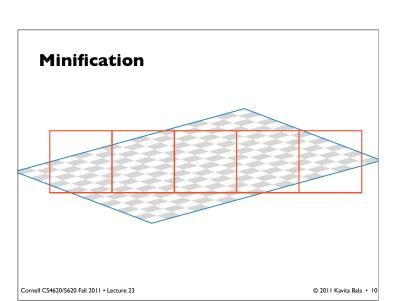
Cornell CS4620/5620 Fall 2011 • Lecture 23


© 2011 Kavita Bala •

# How does area map over distance?

- At optimal viewing distance:
  - One-to-one mapping between pixel area and texel area
- When closer
  - Each pixel is a small part of the texel




- When farther
  - Each pixel could include many texels



Cornell CS4620/5620 Fall 2011 • Lecture 23



© 2011 Kavita Bala •



### **Minification: Theoretical Solution**

- Find the area of pixel in texture space
- Filter the area to compute "average" texture color
  - Filtering eliminates high frequency artifacts
  - How to filter?
    - Analytically compute area
    - •Super-sample
    - But too expensive



Cornell CS4620/5620 Fall 2011 • Lecture 23

© 2011 Kavita Bala • 11