#### CS4620/5620: Lecture 18

#### Meshes

Cornell CS4620/5620 Fall 2011 • Lecture 18

© 2011 Kavita Bala •

#### **Announcements**

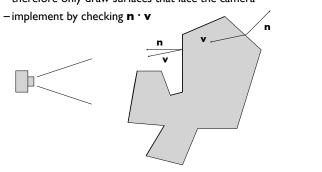
- Prelim next Monday
  - In class, closed book
  - -Including material on Friday
- PPA I out
  - Class on Friday, start early!
- TA evaluations
  - -Will receive email online, make sure to fill them out
- 5625, Spring 2012: MW 2:55-4:10

Cornell CS4620/5620 Fall 2011 • Lecture 18

© 2011 Kavita Bala •

### **Back face culling**

- · For closed shapes you will never see the inside
  - -therefore only draw surfaces that face the camera



#### The z buffer

- In many (most) applications maintaining a z sort is too expensive
  - -changes all the time as the view changes
  - many data structures exist, but complex
- · Solution: draw in any order, keep track of closest
  - -allocate extra channel per pixel to keep track of closest depth so far
  - -when drawing, compare object's depth to current closest depth and discard if greater

Cornell CS4620/5620 Fall 2011 • Lecture 18

© 2011 Kavita Bala •

#### Precision in z buffer

Cornell CS4620/5620 Fall 2011 • Lecture 18

- The precision is distributed between the near and far clipping planes
  - -this is why these planes have to exist
  - -also why you can't always just set them to very small and very large distances
- Generally use z' (not world z) in z buffer

#### **Polygon Meshes**

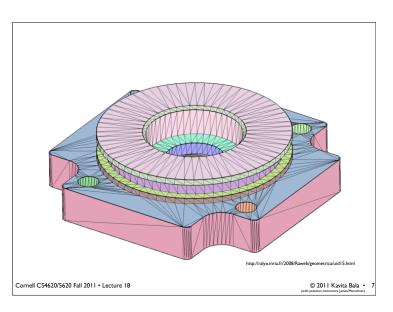
Ch12.1, "Triangle Meshes"

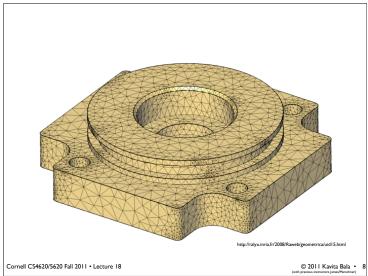
Cornell CS4620/5620 Fall 2011 • Lecture 18

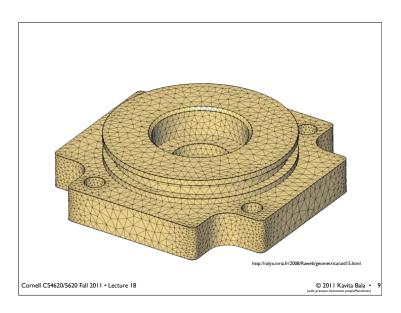
© 2011 Kavita Bala • 5

© 2011 Kavita Bala •

Cornell CS4620/5620 Fall 2011 • Lecture 18







## **Aspects of meshes**

- in many cases we care about the mesh being able to bound a region of space nicely
- in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)
- two completely separate issues:
  - topology: how the triangles are connected (ignoring the positions entirely)
  - -geometry: where the triangles are in 3D space

Cornell CS4620/5620 Fall 2011 • Lecture 18

© 2011 Kavita Bala • 10

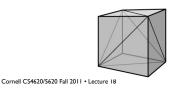
## Topology/geometry examples

• same geometry, different mesh topology:





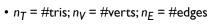
• same mesh topology, different geometry:





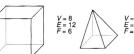
© 2011 Kavita Bala • 11 Cornell CS4620/5620 Fall 2011 • Lecture 18

#### **Notation**





• Euler:  $n_V - n_E + n_T = 2$  for a simple closed surface -and in general sums to small integer





[Foley et a

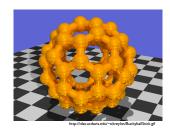
### **Examples of simple convex polyhedra**

| Name               | Image                                             | Vertices<br>V | Edges<br>E | Faces | Euler characteristic:<br>V - E + F |  |  |
|--------------------|---------------------------------------------------|---------------|------------|-------|------------------------------------|--|--|
| Tetrahedron        |                                                   | 4             | 6          | 4     | 2                                  |  |  |
| Hexahedron or cube |                                                   | 8             | 12         | 6     | 2                                  |  |  |
| Octahedron         |                                                   | 6             | 12         | 8     | 2                                  |  |  |
| Dodecahedron       |                                                   | 20            | 30         | 12    | 2                                  |  |  |
| Icosahedron        |                                                   | 12            | 30         | 20    | 2                                  |  |  |
|                    | http://en.wikipedia.org/wiki/Euler_characteristic |               |            |       |                                    |  |  |

Cornell CS4620/5620 Fall 2011 • Lecture 18

© 2011 Kavita Bala • 13

### **Examples of simple convex polyhedra**



### Buckyball

V = 60 E = 90

F = 32 (12 pentagons + 20 hexagons)

V - E + F = 60 - 90 + 32 = 2

Cornell CS4620/5620 Fall 2011 • Lecture 18

© 2011 Kavita Bala • 1

### **Examples (nonconvex polyhedra!)**

| Name                | Image                                             | Vertices<br>V | Edges<br><i>E</i> | Faces<br>F | Euler characteristic:<br>V - E + F |  |  |  |
|---------------------|---------------------------------------------------|---------------|-------------------|------------|------------------------------------|--|--|--|
| Tetrahemihexahedron |                                                   | 6             | 12                | 7          | 1                                  |  |  |  |
| Octahemioctahedron  |                                                   | 12            | 24                | 12         | 0                                  |  |  |  |
| Cubohemioctahedron  |                                                   | 12            | 24                | 10         | -2                                 |  |  |  |
| Great icosahedron   |                                                   | 12            | 30                | 20         | 2                                  |  |  |  |
|                     | http://en.wikipedia.org/wiki/Euler_characteristic |               |                   |            |                                    |  |  |  |

Cornell CS4620/5620 Fall 2011 • Lecture 18

© 2011 Kavita Bala • 15

et al.]

#### **Euler's Formula**

- $n_V$  = #verts;  $n_F$  = #edges;  $n_F$  = #faces
- Euler's Formula for a convex polyhedron:

$$n_V - n_F + n_F = 2$$

- Other meshes often sum to small integer
  - -argument for implication that  $n_V:n_E:n_F$  is about 1:3:2



© 2011 Kavita Bala •

Cornell CS4620/5620 Fall 2011 • Lecture 18

### **Topological validity**

- Strongest property, and most simple: be a manifold
  - this means that no points should be "special"
  - -interior points are fine
  - -edge points: each edge should have exactly 2 triangles
  - -vertex points: each vertex should have one loop of triangles
    - not too hard to weaken this to allow boundaries







Cornell CS4620/5620 Fall 2011 • Lecture 18

© 2011 Kavita Bala • 17
(reth prepara instruction limited from the proper instruction limited

# Representation of triangle meshes

- Compactness
- Efficiency for rendering
  - enumerate all triangles as triples of 3D points
- Efficiency of queries
  - -all vertices of a triangle
  - -all triangles around a vertex
  - -neighboring triangles of a triangle
  - -(need depends on application)
    - finding triangle strips
    - computing subdivision surfaces
    - mesh editing

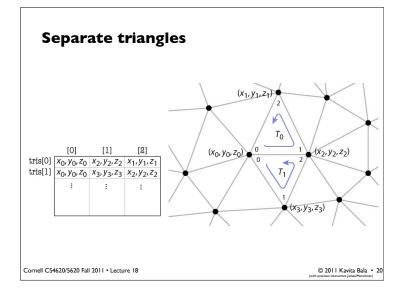
Cornell CS4620/5620 Fall 2011 • Lecture 18

### Representations for triangle meshes

- Separate triangles
- · Indexed triangle set
  - -shared vertices
- · Triangle strips and triangle fans
  - -compression schemes for transmission to hardware
- Triangle-neighbor data structure
  - supports adjacency queries
- Winged-edge data structure
  - supports general polygon meshes

Cornell CS4620/5620 Fall 2011 • Lecture 18

© 2011 Kavita Bala • 19 with previous instructors James/Marschner)



### Separate triangles

- · array of triples of points
  - -float[ $n_T$ ][3][3]: about 72 bytes per vertex
    - 2 triangles per vertex (on average)
    - 3 vertices per triangle
    - 3 coordinates per vertex
    - 4 bytes per coordinate (float)
- · various problems
  - -wastes space (each vertex stored 6 times)
  - -cracks due to roundoff
  - -difficulty of finding neighbors at all

Cornell CS4620/5620 Fall 2011 • Lecture 18

© 2011 Kavita Bala • 2

## Indexed triangle set

• Store each vertex once

Triangle {
 Vertex vertex[3];

• Each triangle points to its three vertices

```
Vertex {
  float position[3]; // or other data
}

// ... or ...

Mesh {
  float verts[nv][3]; // vertex positions (or other data)
  int tInd[nt][3]; // vertex indices
}

Cornell C54620/5620 Fall 2011 • Lecture 18

© 2011 Kavita Bala • 22

Output

Description

© 2011 Kavita Bala • 22

Output

Description

Output

Description

Description

Output

Description

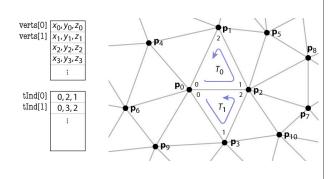
Description

Output

Description

Output
```

# Indexed triangle set



Cornell CS4620/5620 Fall 2011 • Lecture 18

© 2011 Kavita Bala • 23

### Indexed triangle set

- · array of vertex positions
  - -float[ $n_V$ ][3]: 12 bytes per vertex
    - (3 coordinates x 4 bytes) per vertex
- array of triples of indices (per triangle)
  - $-\inf[n_T][3]$ : about 24 bytes per vertex
    - 2 triangles per vertex (on average)
    - (2)
    - (3 indices x 4 bytes) per triangle
- total storage: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined

Cornell CS4620/5620 Fall 2011 • Lecture 18

# Representations for triangle meshes

- Separate triangles
- Indexed triangle set
  - -shared vertices
- Triangle strips and triangle fans
  - -compression schemes for transmission to hardware
- Triangle-neighbor data structure
  - supports adjacency queries
- Winged-edge data structure
  - -supports general polygon meshes

Cornell CS4620/5620 Fall 2011 • Lecture 18