CS4620/5620: Lecture 14

Pipeline

Cornell CS4620/5620 Fall 2011 • Lecture 14

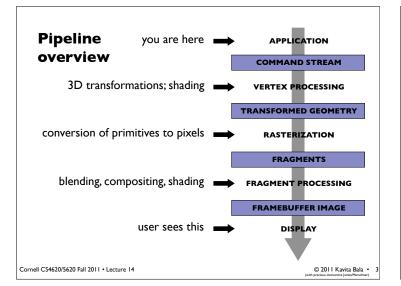
© 2011 Kavita Bala •

Announcements

• HW 2 extension till next Monday

Cornell CS4620/5620 Fall 2011 • Lecture 14

© 2011 Kavita Bala •



Primitives

- Points
- Line segments
 - -and chains of connected line segments
- Triangles
- · And that's all!
 - -Curves? Approximate them with chains of line segments
 - -Polygons? Break them up into triangles
 - Curved regions? Approximate them with triangles
- Trend has been toward minimal primitives
 - simple, uniform, repetitive: good for parallelism
 - and of course, cyclical; now you can send curves, and the vertex shader will convert to primitives

Cornell CS4620/5620 Fall 2011 • Lecture 14

© 2011 Kavita Bala •

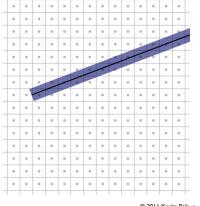
Rasterization

- First job: enumerate the pixels covered by a primitive

 simple, aliased definition: pixels whose centers fall inside
- Second job: interpolate values across the primitive
 - e.g. colors computed at vertices
 - -e.g. normals at vertices
 - -will see applications later on

Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside



© 2011 Kavita Bala • 5 Cornell CS4620/5620 Fall 2011 • Lecture 14

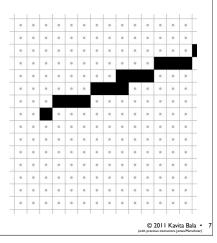
Cornell CS4620/5620 Fall 2011 • Lecture 14

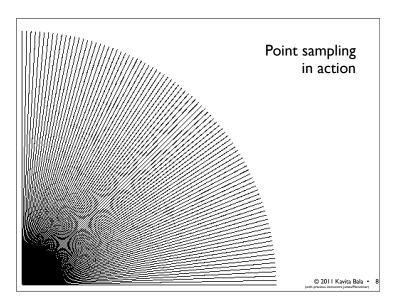
© 2011 Kavita Bala

Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels

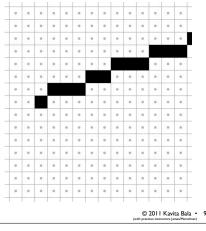
Cornell CS4620/5620 Fall 2011 • Lecture 14

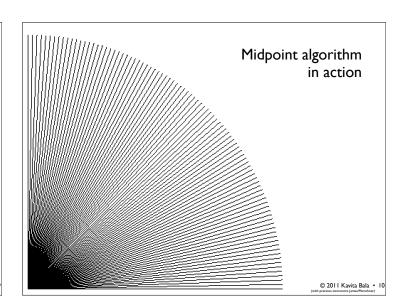




Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner





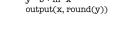
Algorithms for drawing lines

Cornell CS4620/5620 Fall 2011 • Lecture 14

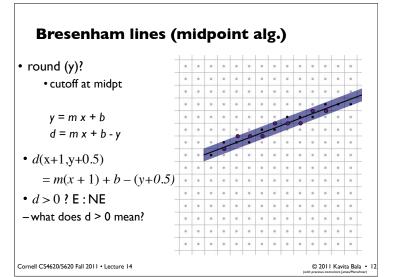
$$d = m x + b - y$$

- Simple algorithm: evaluate line equation per column

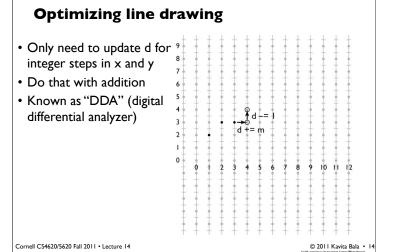
y = b + m*x output(x, round(y))

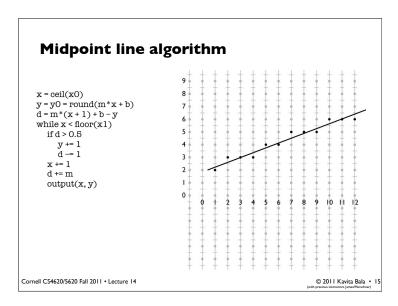


• W.l.o.g. $x_0 < x_1$; $0 \le m \le 1$ for x = ceil(x0) to floor(x1)= 1.91 + 0.37 xCornell CS4620/5620 Fall 2011 • Lecture 14 © 2011 Kavita Bala • 1



Optimizing line drawing Multiplying and rounding: slow At each pixel - only options are E and NE Output Description Description Output Description Description Output Description Description Output Description Des





Linear interpolation

- We often attach attributes to vertices
 - $-\,\mbox{e.g.}$ computed diffuse color of a hair being drawn using lines
 - -want color to vary smoothly along a chain of line segments
- · Recall basic definition

$$-ID: f(x) = (1 - \alpha) y_0 + \alpha y_1$$

-where
$$\alpha = (x - x_0) / (x_1 - x_0)$$

• In the 2D case of a line segment, alpha is just the fraction of the distance from (x_0, y_0) to (x_1, y_1)

Cornell CS4620/5620 Fall 2011 • Lecture 14

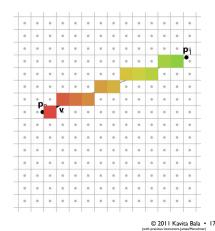
© 2011 Kavita Bala •

Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - -this is linear in 2D

Cornell CS4620/5620 Fall 2011 • Lecture 14

-therefore can use DDA to interpolate



Alternate interpretation

- ${}^{\bullet}$ We are updating d and α as we step from pixel to pixel
 - -d tells us how far from the line we are
 - $\boldsymbol{\alpha}$ tells us how far along the line we are
- \bullet So d and α are coordinates in a coordinate system oriented to the line

Cornell CS4620/5620 Fall 2011 • Lecture 14

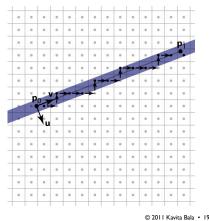
© 2011 Kavita Bala • 1

Alternate interpretation

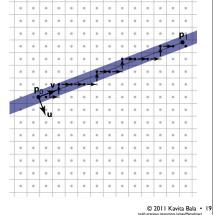
 View loop as visiting all pixels the line passes through

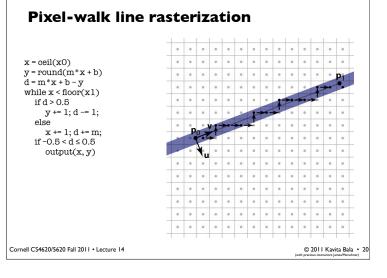
> Interpolate d and α for each pixel Only output frag. if pixel is in band

 This makes linear interpolation the primary operation



Cornell CS4620/5620 Fall 2011 • Lecture 14





Rasterizing triangles

- The most common case in most applications
 - -with good antialiasing can be the only case
 - -some systems render a line as two skinny triangles
- Triangle represented by three vertices
- Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization
 - -walk from pixel to pixel over (at least) the polygon's area
 - evaluate linear functions as you go
 - -use those functions to decide which pixels are inside

Cornell CS4620/5620 Fall 2011 • Lecture 14

© 2011 Kavita Bala • 2

Rasterizing triangles

- Input:
 - -three 2D points (the triangle's vertices in pixel space)

$$\cdot$$
 (x_0, y_0); (x_1, y_1); (x_2, y_2)

-parameter values at each vertex

•
$$q_{00}, ..., q_{0n}; q_{10}, ..., q_{1n}; q_{20}, ..., q_{2n}$$

- · Output: a list of fragments, each with
 - the integer pixel coordinates (x, y)
 - -interpolated parameter values $q_0, ..., q_n$

Cornell CS4620/5620 Fall 2011 • Lecture 14

© 2011 Kavita Bala • 22

Incremental linear evaluation

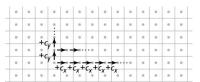
• A linear (affine, really) function on the plane is:

$$q(x,y) = c_x x + c_y y + c_k$$

• Linear functions are efficient to evaluate on a grid:

$$q(x+1,y) = c_x(x+1) + c_y y + c_k = q(x,y) + c_x$$

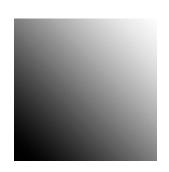
$$q(x,y+1) = c_x x + c_y (y+1) + c_k = q(x,y) + c_y$$



Cornell CS4620/5620 Fall 2011 • Lecture 14

© 2011 Kavita Bala • 23

Incremental linear evaluation



 $c_x = .005; c_y = .005; c_k = 0$ (image size 100x100)

Cornell CS4620/5620 Fall 2011 • Lecture 14

© 2011 Kavita Bala • 24