CS4620/5620: Transformations

Professor: Kavita Bala

Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala •

Announcements

- Check course web page
 - -Piazza information posted for 4620/5620, 4621/5621
- 24x7 online book for 2nd version of Shirley posted
- 4621/5621 starting from next week (we have still not changed registration and are waiting to hear)
- First homework will be out next week

Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala •

Homogeneous coordinates

- · A trick for representing the foregoing more elegantly
- Extra component w for vectors, extra row/column for matrices
 - -for affine, can always keep w = I
- Represent linear transformations with dummy extra row and column

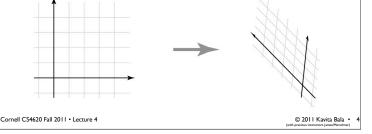
$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \\ 1 \end{bmatrix}$$

Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala • previous instructors (ames/Marschner)

Affine transformations

- The set of transformations we are interested in is known as the "affine" transformations
 - straight lines preserved; parallel lines preserved
 - ratios of lengths along lines preserved (midpoints preserved)



Transforming points and vectors

- Homogeneous coords, let us exclude translation
 - $-just\ put\ 0$ rather than $\ I$ in the last place

$$\begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} M\mathbf{p} + \mathbf{t} \\ 1 \end{bmatrix} \quad \begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} M\mathbf{v} \\ 0 \end{bmatrix}$$

-and note that subtracting two points cancels the extra coordinate, resulting in a vector!

More math background

- Coordinate systems
 - Expressing vectors with respect to bases
 - -Linear transformations as changes of basis

Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala •

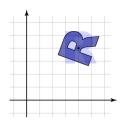
Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala •

Composing to change axes

- Want to rotate about a particular point

 could work out formulas directly...
- Know how to rotate about the origin
 –so translate that point to the origin



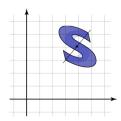
$$M = T^{-1}RT$$

Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala •

Composing to change axes

- Want to scale along a particular axis and point
- Know how to scale along the y axis at the origin
 - -so translate to the origin and rotate to align axes



$$M = T^{-1}R^{-1}SRT$$

Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala •

Affine change of coordinates

· Six degrees of freedom

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix}$$

or
$$\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{p} \\ 0 & 0 & 1 \end{bmatrix}$$

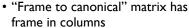
Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala •

© 2011 Kavita Bala • 1

Affine change of coordinates

- Coordinate frame: point plus basis
- Interpretation: transformation changes representation of point from one basis to another



- -takes points represented in frame
- -represents them in canonical basis
- -e.g. [0 0], [1 0], [0 1]
- Seems backward but bears thinking about

Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala •

Affine change of coordinates

- When we move an object to the origin to apply a transformation, we are really changing coordinates
 - the transformation is easy to express in object's frame
 - -so define it there and transform it

$$T_e = FT_F F^{-1}$$

- $-T_e$ is the transformation expressed wrt. $\{e_1, e_2\}$
- $-T_F$ is the transformation expressed in natural frame
- -F is the frame-to-canonical matrix $[u \ v \ p]$
- · This is a similarity transformation

Affine change of coordinates

- A new way to "read off" the matrix
 - -e.g. shear from earlier
 - can look at picture, see effect on basis vectors, write down matrix

 $\begin{bmatrix} 1 & 0.5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- · Also an easy way to construct transforms
 - -e.g. scale by 2 across direction (1,2)
 - (homework)

Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala • 12

Coordinate frame summary

- Frame = point plus basis
- Frame matrix (frame-to-canonical) is

$$F = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{p} \\ 0 & 0 & 1 \end{bmatrix}$$

 $F=\begin{bmatrix}\mathbf{u}&\mathbf{v}&\mathbf{p}\\0&0&1\end{bmatrix}$ • Move points to and from frame by multiplying with F

$$p_e = F p_F$$
 $p_F = F^{-1} p_e$

 $p_e = F p_F \quad p_F = F^{-1} p_e \label{eq:perp}$ • Move transformations using similarity transforms

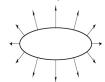
$$T_e = FT_F F^{-1} \quad T_F = F^{-1} T_e F$$

Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala • 13

Transforming normal vectors

- Transforming surface normals
 - differences of points (and therefore tangents) transform OK
 - -normals do not --> use inverse transpose matrix



have: $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$

want: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T X\mathbf{n} = 0$

so set $X = (M^T)^{-1}$

then: $M\mathbf{t} \cdot \mathbf{X}\mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$

Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala • 14

Perspective

Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala • 15

© 2011 Kavita Bala • 17

History of projection

- Ancient times: Greeks wrote about laws of perspective
- Renaissance: perspective is adopted by artists

Duccio c. 1308

Cornell CS4620 Fall 2011 • Lecture 4

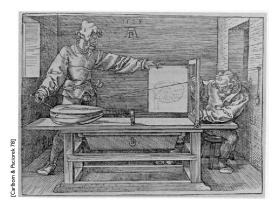
© 2011 Kavita Bala • 16

History of projection

• Later Renaissance: perspective formalized precisely

da Vinci c. 1498

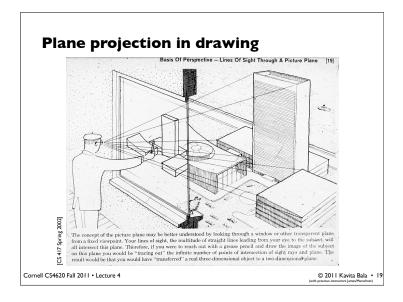
Plane projection in drawing

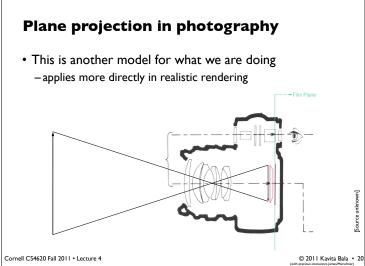


Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala • 18

Cornell CS4620 Fall 2011 • Lecture 4





Plane projection in photography

nard Zakia]

Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala • 21

Ray generation vs. projection

- · Viewing in ray tracing
 - -start with image point
 - -compute 3D point that projects to that point using ray
 - -do this using geometry
- Viewing by projection
 - -start with 3D point
 - -compute image point that it projects to
 - do this using transforms
- Inverse processes

Cornell CS4620 Fall 2011 • Lecture 4

© 2011 Kavita Bala • 22